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Between species and across season variation in growth was examined by tagging and

recapturing individual brook trout Salvelinus fontinalis and brown trout Salmo trutta across

seasons in a small stream (West Brook, Massachusetts, U.S.A.). Detailed information on body

size and growth are presented to (1) test whether the two species differed in growth within

seasons and (2) characterize the seasonal growth patterns for two age classes of each species.

Growth differed between species in nearly half of the season- and age-specific comparisons.

When growth differed, non-native brown trout grew faster than native brook trout in all but

one comparison. Moreover, species differences were most pronounced when overall growth was

high during the spring and early summer. These growth differences resulted in size asymmetries

that were sustained over the duration of the study. A literature survey also indicated that non-

native salmonids typically grow faster than native salmonids when the two occur in sympatry.

Taken together, these results suggest that differences in growth are not uncommon for

coexisting native and non-native salmonids. # 2007 The Authors

Journal compilation # 2007 The Fisheries Society of the British Isles
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INTRODUCTION

Introductions of brown trout Salmo trutta L. to North America have been
implicated in the decline and displacement of native brook trout Salvelinus
fontinalis (Mitchell) (Fausch & White, 1981; Waters, 1983; DeWald & Wilzbach,
1992). Non-native brown trout appear to have had a number of negative impacts
on native brook trout. For example, brown trout may exclude brook trout
from preferred resting positions (Fausch & White, 1981), prey on brook trout
(Alexander, 1977), hybridize with brook trout, disturb the nests of brook
trout (Witzel & MacCrimmon, 1983; Essington et al., 1998) or displace brook
trout into headwater tributaries (Waters, 1983). Some of these impacts proba-
bly stem from competitive interactions because (1) the two species overlap

†Author to whom correspondence should be addressed at present address: Department of Applied

Mathematics and Statistics, University of California, Santa Cruz, CA 95064, U.S.A. Tel.: þ1 8316887017;

fax: þ1 8314595385; email: scarlson@soe.ucsc.edu

Journal of Fish Biology (2007) 71, 1430–1447

doi:10.1111/j.1095-8649.2007.01615.x, available online at http://www.blackwell-synergy.com

1430
# 2007 The Authors

Journal compilation # 2007 The Fisheries Society of the British Isles



considerably in habitat preference, prey preference and diet (Nyman, 1970),
and (2) they engage in intra- and interspecific interference competition for feed-
ing stations (Fausch & White, 1981). Despite this evidence for negative impacts,
the two species often coexist in apparent stability.
The effects of non-native brown trout on fitness-related traits of native brook

trout is the focus of the present research programme. Previous work has demon-
strated that seasonal survival rates are similar for equal-aged cohorts of the two
species (Carlson & Letcher, 2003). Herein, relative growth rate is considered,
which is related to fitness through its effects on body size (Roff, 1992; Stearns,
1992; Arendt, 1997; Blanckenhorn, 2000). Previous laboratory studies suggest
that at 14° C, the growth rate of brown trout may exceed that of brook trout
(DeWald & Wilzbach, 1992). Field data (Cooper, 1953; Fausch & White,
1986), however, are limited, particularly because no studies have examined indi-
vidual growth across a realistic range of temperatures (i.e. across seasons).
Accounting for seasonal variation is important because environmental fac-

tors such as temperature and food availability influence growth rates. Indeed,
the growth of stream residing salmonids is highly seasonal (Cooper, 1953;
Jones et al., 2002; Letcher & Gries, 2003) and tends to be concentrated during
periods when food availability is elevated (Cada et al., 1987; Filbert & Hawkins,
1995) and temperatures are optimal (Jensen, 1990; Filbert & Hawkins, 1995;
Drake & Taylor, 1996). Most studies examining intra-population growth rate
variation in salmonids have focused on a single season (Spalding et al., 1995;
Quinn & Peterson, 1996; Kahler et al., 2001; Hesthagen et al., 2004; Arnekleiv
et al., 2006), while those examining variation among seasons (Shetter, 1937;
Cooper, 1953; Mortensen et al., 1988; Lobón-Cerviá & Rincón, 1998; Utrilla
& Lobón-Cerviá, 1999; Letcher & Gries, 2003) have largely ignored differences
among species and cohorts, although there have been exceptions (Egglishaw &
Shackley, 1977; Whitworth & Strange, 1983). This is unfortunate because inter-
actions among species, ages and seasons may be complex, and testing for the
effect of one factor may require also assessing the others.
In the present study, the relative growth rates of sympatric brook and brown

trout were investigated to determine whether growth rates consistently differ in
a stream where the two species have long been sympatric. Allen & Hoekstra
(1992) define three scale dimensions: (1) spatial extent, (2) temporal extent
and (3) grain (i.e. the fine level of resolution often determined by sampling
design). The present study was of intermediate spatial (a single stream reach
encompassing 4778�4 m2) and temporal extent (2 years) and was fine-grained
(multiple samples per year and individual fish marked and recaptured). This
sampling scheme allowed a characterization of the seasonal growth pattern
for two age classes of each species, and a test of whether growth rates differed
between equal-aged brook and brown trout.

MATERIALS AND METHODS

STUDY SPECIES

Both brook and brown trout are iteroparous and can exhibit anadromy or non-
anadromy. In the study site, all individuals of both species are non-anadromous. Both
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species breed in the autumn (Witzel & MacCrimmon, 1983; Essington et al., 1998) and
have embryos that incubate in the gravel for several months before hatching. Hatch-
lings (‘alevins’) then remain in the gravel for another month or so, during which time
they absorb their yolk sac but do not feed exogenously. Free-swimming age 0 year fish
(‘fry’) emerge from the gravel in the late winter or early spring and begin to feed on
invertebrates. The fishes reached a size suitable for tagging (60 mm and 2 g) during
the summer of their age 0 year.

STUDY SITE AND DATA COLLECTION

The study was conducted in the West Brook, a third order stream in the Connecticut
River basin, Massachusetts, U.S.A. (42°259 N; 72°409 W). The specific study site is 955 m
in length and, during low summer flow conditions, is 4778�4 m2 in total surface area.
A logger recorded water temperature every 2 h from which the daily averages over
the study period were calculated [Fig. 1(a)]. A stage and discharge relationship was
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FIG. 1. (a) Average daily water temperature and (b) discharge in the West Brook, MA, U.S.A. from

March 2000 to December 2001.
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used to generate the average daily discharge during the study period [Fig. 1(b)]. The
West Brook contains self-sustaining populations of brook and brown trout (Carlson
& Letcher, 2003; Carlson et al., 2004) and is artificially stocked each spring with juve-
nile Atlantic salmon Salmo salar L. The date of brown trout introduction to the West
Brook is unknown. The three salmonids are the only fish species present, except for an
occasional black-nosed dace Rhinichthys atratulus (Hermann). For the 1999 cohort,
which emerged from the gravel during the spring of 1999, data were obtained on the
age 1 to age 2 year period (second spring of life to the third autumn of life). For
the 2000 cohort, which emerged during the spring of 2000, data were obtained on
the age 0 to age 1 year period (first summer of life to second autumn of life).

The entire study site was sampled 11 times between March 2000 and December 2001
(Table I). Three sampling techniques were employed: day electrofishing (unpulsed direct
current at 400 V), standard night seining (Gries & Letcher, 2002) and a modified night-
seining technique that included the use of torches and hand-held aquarium nets to
capture fishes along the stream margins. The last two techniques were employed only
during low summer flow conditions, when night seining is most efficient. Regardless
of sampling technique, a 20 m section was enclosed with block-nets and two-pass
removal was performed. This procedure was repeated in an upstream direction until
the entire site was sampled, which usually required 7–11 days.

The programme ‘MARK’ (White & Burnham, 1999) was used to estimate the prob-
ability of capturing an individual if it was alive and present in the study site during the
main sampling period. The sample-specific estimates and CI are provided in Carlson &
Letcher (2003). The averages of these estimates is P ¼ 0�71 (brook trout, 1999 cohort),
P ¼ 0�69 (brown trout, 1999 cohort), P ¼ 0�53 (brook trout, 2000 cohort) and P ¼ 0�48
(brown trout, 2000 cohort). Capture probabilities were therefore similar between equal-
aged brook and brown trout, minimizing bias in the growth estimates.

Captured fishes were anaesthetized (clove oil: 30 mg l�1), weighed (mass, M; �0�1 g),
measured (fork length, LF; �1 mm), sampled for scales (to determine age) and checked
for maturity (expression of milt indicated a mature male). All fishes >60 mm LF and
>2�0 g M were tagged in the peritoneal cavity with a 12 mm passive integrated tran-
sponder tag (PIT tag; Digital Angel, St Paul, MN, U.S.A.). Any previously tagged fishes
had their tag numbers recorded. The anal fin was clipped on all fishes to serve as a
secondary mark. The percentage of fishes captured which had lost their tag (i.e. had
an anal fin clip but no PIT tag) was 1�1% for brook trout and 1�0% for brown trout.

STATISTICAL ANALYSES

The value of M was compared between brook and brown trout for each combination
of cohort and sampling period with t-tests. In the case of unequal variances (i.e. Levene’s
test for equality of variances; Zar, 1999), means were compared using Welch’s approx-
imate t (Zar, 1999). Growth rates were then compared with ANCOVA, where the
dependent variable was the natural logarithm of final mass over an interval (ln M2),
the independent variable was the natural logarithm of initial mass over the interval
(ln M1), and the fixed grouping factor was either season or species. Mass data were
ln transformed to remedy non-linearity and non-constant variance issues (Zar, 1999).
This method was effective in removing confounding effects of initial size on growth
rate, a problem that afflicts the use of specific growth rates. The first step in each
ANCOVA was to test for heterogeneity in the slopes of lines relating final size to initial
size (i.e. the interaction term). If this term was not significant, it was removed and the
model was fitted again, revealing the effect of the grouping factor (season or species)
and allowing comparisons of line elevations (i.e. final sizes at a common initial size).
These are standard procedures for statistically removing the effects of covariation with
body size (Huitema, 1980). If the interaction term was significant, it could not be
removed. In these cases, it was concluded that the groups being compared differed in
growth when the final sizes of the one group were consistently above or below final
sizes of the other group (i.e. if the final sizes for one group fell above or below those
of the other group across the entire range of initial sizes).
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These ANCOVA require that similar lengths of time have passed for the groups
being compared. This was not a problem when comparing species, because the average
length of a given sampling interval differed by at most 1 day between equal-aged brook
and brown trout. Seasonal comparisons, however, were problematic. For the 1999
cohort, no combination of samples yielded intervals of similar length, which precluded
a direct comparison of growth using ANCOVA. For the 2000 cohort, however, it was
possible to compare four ‘seasons’ of approximately equal length: winter 2000–2001
(8 December 2000 to 13 March 2001, 95 days), spring 2001 (13 March 2001 to 9 June
2001, 88 days), summer 2001 (9 June 2001 to 9 September 2001, 92 days) and autumn
2001 (9 September 2001 to 6 December 2001, 88 days).

RESULTS

A total of 965 brook trout and 1393 brown trout were tagged and released
during this study. The number of individuals for which growth could be mea-
sured (Table I) was a sub-set of the total because growth rate estimation
required that an individual be captured in both the starting and ending sample
of an interval. On average, 40% of the individuals captured in the starting
sample defining an interval were also captured in the ending sample (Table I).

BODY MASS

For the 1999 cohort, brown trout were significantly larger than brook trout
from December 2000 to September 2001 [Fig. 2(a)]. They were also larger,
although not significantly so, in August and September 2000 [Fig. 2(a)]. This
broadly consistent size difference arose because average brook trout M, but
not brown trout M, decreased during their age 1 year winter [Fig. 2(a)]. The
exceptions to this general pattern were that brook trout were significantly larger
in March and May 2000 and non-significantly larger in July 2000 [Fig. 2(a)]. For
the 2000 cohort, brown trout were larger than equal-aged brook trout in eight
of nine samples (from August 2000 to December 2001), significantly so in all
but one sample [December 2000; Fig. 2(b)]. The sole exception to this pattern
was that brook trout were non-significantly larger during July 2000 [Fig. 2(b)].

GROWTH VARIATION AMONG SEASONS

Growth was highly seasonal for both species, with the period of rapid M gain
confined to the spring and early summer (Fig. 2). For the 2000 cohort (1999
could not be analysed in this way), the interaction term (ln M1 � season)
was significant for both species, precluding a direct ANCOVA comparison of
differences in regression line elevation. Fortunately, plots of ln M2 and ln M1

clearly show that growth is substantially greater for both species during the
spring than during the other seasons (Fig. 3) because the regression line repre-
senting the spring sample falls above the regression lines representing the other
samples across the range of x-values (i.e. initial sizes). Thus, ANCOVA, which
accounts for variation in initial size (Fig. 3), yielded the same conclusion as the
comparison of seasonal size trends (Fig. 2), growth rates were elevated in the
spring relative to the other seasons, which did not differ from each other
(Fig. 3).
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GROWTH VARIATION BETWEEN SPECIES

For the 1999 cohort, sample sizes were small (Table I), but the data spanned
a sufficient range of initial sizes to warrant analysis (supported by a highly sig-
nificant covariate, ln M1, in all but one interval; Table II). For this cohort, the
interaction between initial size (ln M1) and species was not significant (Table II)
in eight of nine intervals. Removal of the interaction term revealed that brown
trout of the 1999 cohort grew faster than equal-aged and equal-sized brook
trout during three intervals (age 1 year early summer, age 2 year spring and
age 2 year early summer), whereas the two species grew at similar rates during
the remaining five intervals (Table II). In the interval for which slopes differed
(age 1 year winter), M2 for a given M1 showed considerable overlap between the
species, suggesting that growth rates did not differ significantly.
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cohorts.
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For the 2000 cohort, the interaction between initial size and species was not
significant in six of seven intervals (Table II). Removal of the interaction term
revealed that brown trout of the 2000 cohort grew faster than equal-aged and
equal-sized brook trout during four intervals (age 0 year late summer, age 1
year spring, age 1 year early summer and age 1 autumn), slower during one
interval (age 0 year autumn) and similarly during one interval (age 1 year late
summer; Table II). In the interval where slopes differed (age 0 year winter),
M2 for a given M1 showed considerable overlap between the species, suggesting
that growth rates did not differ (as in the 1999 cohort).

DISCUSSION

This study yielded several salient results. First, both species showed high
growth in the spring, followed by low growth thereafter (Figs 2 and 3), a pattern

FIG. 3. Seasonal growth comparison for the 2000 cohort (a) brook and (b) brown presented as the ln final

mass (ln M2) and ln initial mass (ln M1) of individual fishes plotted over specified seasons: winter

2000 ( ), spring 2001( ), summer 2001( ) and autumn 2001 ( ). The curves were fitted

by: (a) winter 2000 y ¼ 1�1719x � 0�1184 (r2 ¼ 0�962, P < 0�001), spring 2001 y ¼ 0�7389x þ 1�5577
(r2 ¼ 0�792, P < 0�001), summer 2001 y ¼ 0�9485x þ 0�1345 (r2 ¼ 0�883, P < 0�001), autumn 2001

y ¼ 0�8748x þ 0�4023 (r2 ¼ 0�700, P < 0�001) and (b) winter 2000 y ¼ 1�0117x þ 0�1186 (r2 ¼ 0�978,
P < 0�001), spring 2001 y ¼ 0�7974x þ 1�5909 (r2 ¼ 0�890, P < 0�001), summer 2001 y ¼ 0�9607x þ
0�2658 (r2 ¼ 0�922, P < 0�001) and autumn y ¼ 0�9781x þ 0�1927 (r2 ¼ 0�959, P < 0�001).
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that probably reflected increased flow (Fig. 1) and food availability during the
spring. For example, Grader & Letcher (2006) found that the density of inver-
tebrate drift in the West Brook peaked in the spring and was much reduced
during the remainder of the year. Additionally, the West Brook is fed by a res-
ervoir from which little water is released during the summer, leaving the stream
essentially spring-fed. This general pattern may also reflect seasonal differences
in feeding motivation (Metcalfe et al., 1986). These results therefore support
previous studies in showing that salmonid growth in streams is highly seasonal
(Cooper, 1953; Whitworth & Strange, 1983; Letcher & Gries, 2003).
Second, growth often differed between the species. Specifically, brown trout

showed significantly faster growth than brook trout in seven of 16 intervals
(Table II) and were consequently larger for much of the age 0þ to age 2þ year
period (Fig. 2). Brook trout showed significantly faster growth in only one
interval (age 0 year autumn). Only two studies have compared growth rate
between sympatric brook and brown trout in natural streams. Cooper (1953)
found that brook trout cohorts increased in average size faster than brown
trout cohorts, but these comparisons confounded individual growth with differ-
ential mortality. This was problematic because mortality owing to sport fishing
was higher for brook trout than for brown trout (Cooper, 1953). In contrast,
Fausch & White (1986) found that age 0 year brook and brown trout emerged
from the gravel at a similar size and grew at a similar rate during their first
summer but growth information from other seasons was not reported (Fausch
& White, 1986). In the present study, the brook trout were significantly larger
than brown trout during the first sample in which they were captured (age 0 year
July), but this size advantage was reversed by the next sample (age 0 year
August) after which brown trout maintained their size advantage throughout
the duration of the study [Fig. 2(b)].
Third, species differences in growth were largest when overall growth was

greatest in the spring. Growth differed between brook and brown trout in eight
of 16 intervals and five of these differences were associated with spring and
early summer growth intervals (Table II). Divergence of growth rates during
periods of rapid mass gain resulted in differences in size that were sustained
throughout the duration of the study (Fig. 2).

POSSIBLE CAUSES OF GROWTH DIFFERENCES

The observed species differences in growth might arise through at least four
non-exclusive mechanisms. First, species may differ in optimal temperatures for
feeding or growth. Many authors have reported that brook trout are usually
found farther upstream, where the water is cooler, than are brown trout
(Waters, 1983). This suggests that brook trout may be more cold tolerant,
but Elliott (1981) found that brown trout have a slightly wider range of tem-
peratures suitable for feeding (4–19° C) than do brook trout (8–20° C). In
the study sites within the West Brook, the two species coexist in a zone of sym-
patry, suggesting that they should experience similar thermal conditions. More-
over, temperatures during the spring period, when most mass is gained, are
well within the feeding range of both species (Fig. 1). Whether local adaptation
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in thermal ecology (Jensen et al., 2000) drives the observed growth differences
between the two species remains to be tested.
Second, the two species may differ in aggression, which may drive differences

in microhabitat use. Stream resident salmonids aggressively defend territories
(Kalleberg, 1958) and some studies have shown that differences in aggression
or dominance are related to growth rate (Fausch, 1984) although exceptions
have been demonstrated (Vøllestad & Quinn, 2003). In the most relevant study,
Fausch & White (1981) found that brown trout excluded equal-sized brook
trout from advantageous stream positions, which should lead to a growth
advantage for brown trout. Indeed, Fausch (1984) showed that juvenile salmo-
nids quickly establish dominance hierarchies, and that individuals exhibiting
the fastest growth were those holding the optimal positions (i.e. positions that
provided ‘maximum profit’ in terms of energy expenditure and energy acquisi-
tion). Lower growth of brook trout than brown trout in the West Brook may
thus reflect displacement of the former by the latter from optimal positions.
Third, differences in past growth might maintain or exacerbate differences

in current growth. This positive feedback might occur because the ability of
salmonids to defend preferred stream positions is a function of their body
size. For example, Young (2004) found that the larger size of juvenile coho
salmon Oncorhynchus kisutch (Walbaum) than juvenile steelhead trout Onco-
rhynchus mykiss (Walbaum) allowed the coho salmon to exclude the steelhead
trout from mutually preferred habitat. For the West Brook, the growth of
brown trout exceeded that of equal-aged brook trout during the spring,
and the resulting size-asymmetry was maintained thereafter (Fig. 2). In fact,
the two species continued to diverge in size, owing to continued faster
growth by the brown trout. A similar pattern of increasing divergence in
size has been documented for brook trout and rainbow trout (O. mykiss)
(Whitworth & Strange, 1983). These size asymmetries probably give the
larger fishes access to the most profitable stream positions, thereby enhanc-
ing their subsequent growth (Fausch, 1984). Of course, the invocation of past
growth to explain current growth cannot explain how growth diverged in the
first place.
Fourth, differences in the density of conspecifics and heterospecifics might

influence growth rate differences. For instance, Byorth & Magee (1998) found
that growth rates differed between Arctic grayling Thymallus arcticus (Pallas)
and brook trout. The species exhibiting the higher growth rate, however, was
also the species making up a lower proportion of the total biomass within
a given enclosure. Intraspecific interactions thus seemed more important in
determining growth than did interspecific interactions. The growth of brown
trout is a negative function of conspecific density at densities similar to those
observed in the present study (Jenkins et al., 1999; Lobón-Cerviá, 2007), and
brown trout densities exceeded those of brook trout in the West Brook (Table I).
It might therefore be expected that brown trout were more growth limited than
brook trout, which was not the case. Perhaps growth differences might have
been more pronounced if the densities of the two species were more equal,
or perhaps, resource limitation is different for the two species; for example,
brook trout use a resource that is less abundant and so a lower density still
has greater effects.
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POSSIBLE CONSEQUENCES OF GROWTH DIFFERENCES

The immediate consequence of disparate growth rates between ecologically
similar species is a divergence in body size (Fig. 2). This size-structure prob-
ably minimizes direct overlap in resource use possibly facilitating their stable
coexistence. To the degree that this is true, growth rates should often differ
between native and non-native salmonids when they coexist (and, more gen-
erally, between coexisting stream resident salmonids). To test this prediction,
results were compiled from previously published studies comparing the
growth of native and non-native salmonids in natural streams, artificial
stream enclosures or laboratory studies (Table III). In all but one compari-
son, growth differed between pairs of co-occurring native and non-native
salmonids (10 of 11 studies; Table III). Interestingly, the growth of the non-
native salmonid often exceeded that of the native salmonid (eight of 10 stud-
ies in Table III). Of course, the studies included in Table III represent cases
where the non-native salmonid has established a self-sustaining population.
Whether this result holds for cases of unsuccessful introductions or invasions
remains unknown.
Together, these results suggest that sympatric native and non-native salmo-

nids often differ in growth rate, suggesting that differences in growth may
facilitate coexistence of ecologically similar species. This effect may occur
for several reasons. First, differences in growth may reduce niche overlap
and increase resource partitioning (Nyman, 1970). For instance, a size differ-
ence may lessen the degree of interference competition for preferred resting
positions, because body size is often related to microhabitat choice (Fausch
& White, 1981). Second, the expected fitness benefits of faster growth may
be offset by equivalent fitness costs (Arendt, 1997; Blanckenhorn, 2000).
For example, rapid growth can increase the risk of predation (Munch &
Conover, 2003). Native and non-native salmonids may therefore achieve simi-
lar fitness despite differences in growth, which should facilitate their stable
coexistence. Indeed, previous work in the West Brook has shown that
equal-aged brook trout and brown trout survive at similar rates (Carlson &
Letcher, 2003). Thus, despite the faster growth of brown trout, their survival
rates do not exceed those of equal-aged brook trout suggesting that growth
rate is not the only factor determining success in this system. Future work
designed to elucidate the causes of mortality are necessary to understand
how brook trout survive at similar rates as brown trout despite their rela-
tively slower growth.
In the present study, growth often differed between native trout and the non-

native trout, and the differences in growth were concentrated during the spring
and early summer when overall growth was most rapid. Differences in growth
during periods when the opportunity for growth is high can lead to sustained
size differences, which presumably reduces niche overlap, increases the parti-
tioning of available resources, and in so doing creates favourable conditions
for coexistence. Interestingly, it appears that the growth rates of non-native
salmonids often exceed those of native salmonids when they occur in sympatry.
Future work is necessary to test whether these growth differences are a cause
or consequence of coexistence.
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