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Despite the potential for rapid evolution, stasis is commonly observed over geological timescales—the so-called “paradox of

stasis.” This paradox would be resolved if stabilizing selection were common, but stabilizing selection is infrequently detected in

natural populations. We hypothesize a simple solution to this apparent disconnect: stabilizing selection is hard to detect empirically

once populations have adapted to a fitness peak. To test this hypothesis, we developed an individual-based model of a population

evolving under an invariant stabilizing fitness function. Stabilizing selection on the population was infrequently detected in an

“empirical” sampling protocol, because (1) trait variation was low relative to the fitness peak breadth; (2) nonselective deaths

masked selection; (3) populations wandered around the fitness peak; and (4) sample sizes were typically too small. Moreover, the

addition of negative frequency-dependent selection further hindered detection by flattening or even dimpling the fitness peak,

a phenomenon we term “squashed stabilizing selection.” Our model demonstrates that stabilizing selection provides a plausible

resolution to the paradox of stasis despite its infrequent detection in nature. The key reason is that selection “erases its traces”:

once populations have adapted to a fitness peak, they are no longer expected to exhibit detectable stabilizing selection.

KEY WORDS: Competition, directional selection, disruptive selection, fitness landscape, frequency-dependent selection, selection

gradient.

Introduction
The “paradox of stasis” (or the “problem of stasis”) has long

been a focus of debate among evolutionary biologists (Simpson

1944; Lewontin 1974; Gould and Eldredge 1977; Wake et al.

1983; Williams 1992; Hansen and Houle 2004; Friedman 2009;

Futuyma 2010; Kirkpatrick 2010). At the foundation of the para-

dox is the pattern, commonly seen in the fossil record, of long

periods of morphological stasis despite the potential for—and

occasionally the appearance of—rapid evolution (Darwin 1859;

Simpson 1944; Eldredge and Gould 1972; Stanley 1979; Brad-

shaw 1991; Benton and Pearson 2001; Gingerich 2001; Eldredge

et al. 2005; Gingerich 2009; Uyeda et al. 2011). Although the

generality of stasis has been disputed (Gould and Eldredge 1977;

Stebbins and Ayala 1981; Gould and Eldredge 1993; Erwin and

Anstey 1995; Hunt 2007, 2008), the many instances in which it

clearly occurs demand explanation.

One explanation for stasis is the presence of stabilizing se-

lection (Fig. 1B) maintained over long timescales (Charlesworth

et al. 1982; Estes and Arnold 2007), presumably owing to phe-

notypic fitness peaks that correspond to relatively stable niches

(Holt and Gaines 1992; Ackerly 2003; Hansen 2012). Selection of

this sort could constrain populations to a relatively constant and

narrow range of high-fitness phenotypes and thus limit the fre-

quency and extent of directional evolutionary change. Although

this mechanism is unlikely to explain all instances of evolutionary

stasis (Hansen and Houle 2004), and although other explanations
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Figure 1. Types of univariate selection (after fig. 1 in Phillips and Arnold 1989). The top of each panel shows a fitness function; below

is shown a population trait frequency distribution before selection (solid line), the action of selection (arrows), and the frequency

distribution after selection (dashed line). The types of selection shown are: (A) directional; (B) stabilizing; (C) a combination of directional

and stabilizing selection; (D) disruptive selection; and (E) “squashed stabilizing selection” (SSS), a combination of stabilizing selection and

negative frequency-dependent selection (see Introduction). The top of (E) illustrates that the addition of negative frequency-dependent

selection can either flatten the top of the fitness peak (dashed line) or actually dimple it downwards (solid line); both are “squashed.” The

bottom of (E) illustrates that SSS causes the phenotypic distribution after selection to be platykurtic (dashed line); but for quantitative

traits, random mating will restore a normal distribution in the offspring (dotted line), and thus the net effect is an increase in variance, as

with disruptive selection (Slatkin 1979). Note that the fitness landscapes in (A)–(D) are static; because of this, a population experiencing

disruptive selection (D) is in an unstable equilibrium and will escape from the fitness minimum in one direction or the other. In contrast,

the fitness landscape in (E) is dynamic, due to the presence of frequency-dependent selection; a population experiencing SSS is at a stable

equilibrium and cannot escape the fitness minimum (see Introduction).

have been advanced (Wake et al. 1983; Hansen and Houle 2004;

Eldredge et al. 2005; Estes and Arnold 2007; Zeh et al. 2009;

Futuyma 2010; Kirkpatrick 2010; McGuigan et al. 2011), stabi-

lizing selection does seem likely in many instances (Charlesworth

et al. 1982; Lynch 1990; Estes and Arnold 2007; Uyeda et al.

2011). If stabilizing selection predominates over long timespans

in nature, the paradox would largely be resolved, but a key diffi-

culty remains: stabilizing selection does not seem to predominate

in empirical studies of selection in nature (Travis 1989; King-

solver et al. 2001, 2012). Indeed, disruptive selection (Fig. 1D) is

detected (i.e., statistically significant) about as often as stabiliz-

ing selection, whereas directional selection (Fig. 1A) is detected

even more often (Kingsolver et al. 2001, 2012; Kingsolver and

Pfennig 2007; Knapczyk and Conner 2007; Kingsolver and Di-

amond 2011). Furthermore, even when stabilizing selection is

detected it often does not persist through time (Siepielski et al.

2009, 2011). We here propose and test a hypothesis that resolves

this apparent disconnect between theoretical expectations and em-

pirical findings, and thus removes a key objection to stabilizing

selection as a resolution to the paradox of stasis.

Our hypothesis is that stabilizing selection will be difficult

to detect empirically even when populations commonly occupy

stabilizing fitness landscapes. This hypothesis derives from five

postulates. First, when a population is well adapted, the fitness

peak it occupies might be broad compared to the phenotypic

range of the population (Hendry and Gonzalez 2008; Cresswell

2000), leading to relatively few selective deaths and thus a sta-

tistically weak signature of stabilizing selection. In essence, se-

lection “erases its traces” by causing the phenotypic variance of

the population to adjust to the width of the fitness peak, and so

fewer selective deaths are subsequently observed even though

the fitness landscape has not changed. Second, populations on fit-

ness peaks might stochastically wander back and forth, generating

episodic directional selection even though the fitness landscape is

stabilizing and invariant (Wright 1932; Lande 1976; Hunt et al.

2008). Third, random mortality (i.e., mortality uncorrelated with

the focal trait subject to a stabilizing fitness landscape) might ob-

scure the selective signal, decreasing statistical power (Hersch and

Phillips 2004). Fourth, negative frequency-dependent selection

(Ayala and Campbell 1974) might flatten, or even dimple, the tops

of fitness peaks (Rosenzweig 1978; Slatkin 1979; Abrams et al.

1993; Bürger 2002a,b; Bürger and Gimelfarb 2004; Bürger 2005;

Rueffler et al. 2006). This combination of negative frequency-

dependent selection and stabilizing selection, which we term

“squashed stabilizing selection” (SSS; Fig. 1E; see Squashed sta-

bilizing selection), causes selective deaths close to the phenotypic

mean that decrease detection of stabilizing selection while in-

creasing detection of disruptive selection (Day and Young 2004;

Sinervo and Calsbeek 2006; Kingsolver and Pfennig 2007). Fifth,

the small sample sizes typically used in empirical studies of selec-

tion might yield insufficient statistical power to detect stabilizing

selection (Kingsolver et al. 2001; Hersch and Phillips 2004).

Although the above postulates seem reasonable and would

be expected to limit the detection of stabilizing selection, they

have not previously been subject to quantitative exploration. We

performed this exploration through an individual-based model of

a population subject to an invariant stabilizing fitness function

resulting from a resource-based fitness peak. The dynamics of
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populations subject to stabilizing fitness functions have been ex-

tensively explored by previous theoretical research (Wright 1935;

Robertson 1956; Latter 1960; Gale and Kearsey 1968; Lande

1976; Bürger 1986, 1998; Keightley and Hill 1988; Barton 1989;

Bürger et al. 1989; Foley 1992; Bürger and Lande 1994; Bürger

and Gimelfarb 1999; Willensdorfer and Bürger 2003; Estes and

Arnold 2007). Extending these findings was not our aim; rather

we were specifically interested in the empirical methods normally

employed to detect stabilizing selection on natural populations.

The efficacy of these empirical methods has not been explored

in previous research, and yet this efficacy is central to the crucial

disconnect at the heart of the paradox of stasis: the infrequent

empirical detection of stabilizing selection versus the theoretical

expectation that stabilizing fitness landscapes should be common.

To address this disconnect as directly as possible, we fol-

lowed the “virtual ecologist” approach advocated by Zurell

et al. (2010). Specifically, we sampled the modeled population

in simulated mark-recapture experiments each generation, and

then used these samples in standard regression-based tests of se-

lection. From this analysis, we show that the pattern of selection

observed in our model under reasonable parameter values is com-

patible with the empirical pattern of selection observed in nature.

Our results therefore resolve the crucial disconnect, by showing

that a population that has adapted to a stabilizing fitness func-

tion is expected to exhibit statistically detectable selection (of any

type) only rarely using standard methods. Furthermore, when se-

lection is detected on such a population, it might be directional or

(particularly with the addition of negative frequency-dependence)

disruptive as often as stabilizing. Although natural populations

might often exhibit long-term evolutionary stasis due to stabiliz-

ing fitness peaks, empirical studies are currently limited in their

ability to detect this phenomenon.

Our individual-based approach is essential to our goal for

several complementary reasons. First, it allows the phenotypic

variance of the population to adjust to the selective regime; selec-

tion can thus “erase its traces” as it would in a natural population,

rather than being constrained by a fixed phenotypic variance. Sec-

ond, it allows negative frequency-dependent selection to be real-

istically modeled, including generation-by-generation temporal

fluctuations in frequency-dependent selection due to the chang-

ing phenotypic distribution. Third, it allows drift and demographic

stochasticity to potentially influence evolution, as would be the

case in natural populations.

Methods
MODEL SUMMARY

A full model description is given in Supplemental S1. In brief, we

developed an individual-based, nonspatial, sexual model of the

evolution of a single population on an invariant stabilizing fitness

function (parameters summarized in Table 1). The model includes

both a selected trait (as), subject to the stabilizing fitness function,

and a neutral trait (an) physically unlinked with the selected trait.

The neutral trait serves as a control, showing the pattern of selec-

tion detected on a trait that is not under selection, but that exists

in organisms under selection on other traits. Both traits have a

genetic value based on one of three implemented genetic archi-

tectures (see Supplemental S1, Genetic architectures): (1) a single

value representing a quantitative genetics approach with, concep-

tually, an infinite number of loci (the “quantitative” architecture,

following, e.g., Heinz et al. 2009); (2) a diploid 8-locus trial-

lelic architecture (“triallelic,” following, e.g., Thibert-Plante and

Hendry 2011); or (3) a diploid 8-locus continuum-of-alleles ar-

chitecture (“continuum,” following, e.g., Yeaman and Guillaume

2009). These three architectures were chosen as they bracket the

main alternatives used in theoretical models—alternatives that

have been argued to matter for various outcomes. Notably, all ar-

chitectures allow the genetic variance of the population to evolve

in response to the selective regime, thus producing more realistic

dynamics than would a fixed variance. Phenotypic trait values

(zs, zn) are derived from the respective genetic values (as, an) by

the addition of random environmental noise with variance VE.

Time is divided into nonoverlapping generations with three

phases: random mortality, selective mortality, and reproduction.

In the first phase, the population size is reduced by random mor-

tality at a rate m, representing deaths due to causes other than

selection on the focal trait. In the second phase, additional mor-

tality occurs based on the absolute fitness of each individual as a

function of its phenotype, due to both a stabilizing fitness function

(always enabled) and negative frequency-dependent selection (if

enabled by an “on/off switch” parameter C), similar to Roughgar-

den (1972) and Dieckmann and Doebeli (1999). The stabilizing

fitness function is modeled with a Gaussian function of width ω,

so that fitness decreases with increasing distance of an individual’s

phenotype from the optimum phenotype θ (see Supplemental S1,

Selection phase). Standardized by the phenotypic standard de-

viation, ω2 was typically less than 50, with a median of ∼17.5

and a strong mode at 3 (see Supplemental S2, The strength of

stabilizing selection), which is consistent with the range of values

typically observed empirically (Estes and Arnold 2007). Negative

frequency-dependent selection, conceptualized as competition, is

modeled with a phenotypic competition kernel width of σ c and

an intensity c, and its effects on fitness are combined multiplica-

tively with the fitness effects due to the underlying stabilizing

fitness function (see Supplemental S1, Interactions and Selection

phase). In the third phase, sexual reproduction occurs randomly

(nonassortatively) up to the environment’s carrying capacity of

juveniles, Nj. Inheritance is modeled according to the above ge-

netic architectures, including mutation occurring at a rate μ with

mutational effect size standard deviation α (see Supplemental S1,
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Table 1. Model parameters (above the divider) and analysis-related symbols (below the divider) with their value(s) and their units. Units

are expressed using the symbols E (ecological phenotype), I (individuals), and G (generations).

Description Symbol Value Units

Competition enabled C off, on –
Number of juveniles (individuals prior to mortality) Nj 1000, 25001 I
Environmental variance VE 0.1, 0.01, 0.001 E2

Mutation rate per locus μ 0.001, 0.00001 G−1

Mutational effect size (standard deviation of the
mutational kernel)

α 0.5, 0.052 E

Phenotypic optimum θ 0.0 E
Width of the Gaussian fitness function (strength of

stabilizing selection)
ω 1.0, 10.0 E

Phenotypic competition width (standard deviation of the
competition kernel)

σ c 0.5, 2.03 E

Intensity of competition c 1.03 –
Mortality rate m 0.0, 0.1, 0.5 G−1

Genetic architecture G Q, T, C4 –
Mark-recapture subsample size Ns 100, 500, 1000, 25001 I
Analyzed trait T as, zs, an, zn

5 –

1Realizations with Nj = 2500 were limited to μ = 0.001 and α = 0.5, and are shown only in Supplemental S2; subsample size Ns = 2500 was only conducted

for those realizations.
2Parameter α is not defined for the triallelic genetic architecture; where values of α are plotted, a value of 1.0 is used in this case; see Supplemental S1,

Genetic architectures.
3Parameters σc and c are used by the model only when competition is enabled (C = on); see Model summary and Supplemental S1, Selection phase.
4Genetic architecture values Q, T, and C represent the quantitative, triallelic, and continuum genetic architectures, respectively; see Model summary and

Supplemental S1, Genetic architectures.
5Analyzed trait values as, zs, an, and zn represent the selected trait’s genetic (breeding) and phenotypic values and the neutral trait’s genetic (breeding) and

phenotypic values, respectively; see Model summary and Supplemental S1, Environment and state variables.

Parameters, regarding mutational variance, and Supplemental S2,

Effects of heritability, regarding genetic and phenotypic variances;

these are in general agreement with empirical values).

DATA COLLECTION

A total of 720 realizations (“runs”) of the model generated the

main body of results; see Table 1 for parameter values used. The

triallelic architecture comprised 144 realizations: two values of

C × three values of VE × two values of μ × two values of ω

× two values of σ c × three values of m. The quantitative and

continuum architectures, which had two values of α for each of

the above parameter combinations, each comprised 288 realiza-

tions. Because σ c is not used by the model when competition is

off, the 360 realizations without competition contain redundancy;

specifically, that set covers 180 distinct parameter combinations,

each realized twice. This redundancy allowed the total sizes of

various subsets of the data to be equal, simplifying the analysis,

and also allowed the reproducibility of results to be tested (see

Supplemental S2, Autocorrelation and Reproducibility).

Each realization of the model comprised 60,000 generations,

with population census information saved each generation (see

Supplemental S1, Observables). The first 10,000 generations were

considered “burn-in” and were not used in the results presented

here. In reality, fewer than 1000 generations were necessary for

the model to reach a pseudo-equilibrium state (not shown), but

10,000 generations were used to ensure that the initial state of the

model was unlikely to affect results.

DATA ANALYSIS

The analysis of the data generated by the model realizations is

summarized in Figure 2. Analysis was conducted in the R pro-

gramming language, version 2.14.2 (R Development Core Team

2012). A significance threshold of α = 0.05 was used for all statis-

tical tests unless otherwise specified. For each model realization,

separate analyses were conducted using population samples of

several sizes (Ns of 100, 500, and 1000 individuals). When the

sample size Ns equaled the carrying capacity Nj (Nj = Ns = 1000),

the “sample” was a full population census; this case considered

the detection of selection in the absence of sampling error. To

generate a sample of size Ns, a simulated mark-recapture sur-

vey was conducted in which Ns juveniles were “marked” at the

beginning of a generation, and only that subset of individuals

was “recaptured” and subjected to analysis at the end of the

generation. A recapture rate of 100% was guaranteed; in other
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realizations (runs)

mark/recapture simulations

linear regressions

ANOVAs

A

B

C

D

F

E

further statistical analyses

Model definition (Supplemental S1)

Full population histories
(neutral & selected trait values, survival)

Subsampled population histories
(neutral & selected trait values, survival)

Selection gradient estimates (  / ) for each 
generation, with statistical significances

P( *)
P( *)

frequency 
histograms

summary 
statistics

Significance and effect size of the effects
of parameters on P( *) and P( *)

Figure 2. The principal path of data analysis in this research. The

model (A) was realized with various parameter values to generate

the primary data set: full histories of the modeled populations (B),

including genotypic and phenotypic values for the neutral and

selected traits of each individual, and whether each individual

survived to reproductive age. These histories were subsampled

to simulate an empirical mark-recapture protocol, generating the

subsampled histories (C) used by the subsequent analysis. Linear

regressions of survival as a function of trait value were then ap-

plied to each generation of the subsampled histories to produce

estimates of the selection gradients (β and γ ) acting on each pop-

ulation in each generation (D). Summary statistics and frequency

histograms were used to summarize these selection gradient es-

timates. Additionally, the rates of detection of β and γ , P(β∗) and

P(γ∗) (E), were calculated for each realization to determine how

often we can expect to detect selection of different types (linear

and quadratic) on a population subject to an invariant stabilizing

fitness function. Finally, ANOVAs incorporating all of the varied

model parameters were used to determine the significance and

effect size of the effects of model parameters on P(β∗) and P(γ∗),

both without and with competition (F).

words, every “marked” individual that survived the random mor-

tality and selective mortality phases was “recaptured,” and thus it

could be reliably concluded that all individuals not “recaptured”

had died. This methodology produced the most comprehensive

data set possible for a mark-recapture survey of size Ns, and thus

maximized the rate of detection of selection; it was thus con-

servative in testing our hypothesis. Similarly, although surviving

individuals do vary in their reproductive output in our model, our

use of survival rather than lifetime reproductive output as the met-

ric of fitness was conservative because variation in mating success

and fecundity in our model is stochastic, not trait-based, and is

therefore not heritable. The addition of this random noise arising

from reproductive stochasticity would have only further masked

the signal of trait-based selection.

For each generation in each subsampled population history,

univariate regression analysis of fitness (as defined by binary sur-

vival) as a function of trait value (standardized to a mean of 0

and a standard deviation of 1) was used to determine the strength,

direction, type, and significance of selection. Two types of regres-

sion analysis were conducted: linear, following Lande and Arnold

(1983), and logistic, following Janzen and Stern (1998). Detec-

tion of selection was much more frequent with linear regression,

making it more conservative in testing our hypothesis, so we focus

here on results from the linear regressions (see Supplemental S2,

Logistic vs. linear regression, for methods and results for logistic

regression). Regressions were conducted using relative fitness

(absolute fitness divided by mean fitness across the sample), fol-

lowing standard practice (Lande and Arnold 1983; Brodie et al.

1995; Stinchcombe et al. 2008). For each generation, regression

was conducted first with a linear term to assess directional se-

lection (the “nonquadratic regression”), and then with both a

linear and a quadratic term (the “quadratic regression”) to as-

sess quadratic selection. Negative (positive) quadratic selection

is consistent with, but not limited to, stabilizing (disruptive) se-

lection (Schluter 1988; Brodie et al. 1995). These regressions

were conducted once using the genetic trait (breeding) values of

individuals, and once using phenotypic trait values, allowing us

to compare the two. Finally, each of these regressions was con-

ducted once for the selected trait and once for the neutral trait.

Eight regressions per generation per subsampled history were

therefore conducted: linear/quadratic × genetic/phenotypic × se-

lected/neutral. Quadratic coefficients from these regressions were

doubled to yield quadratic selection gradients, γ (Stinchcombe

et al. 2008).

A total of 2,764,800,000 regressions were conducted (in-

cluding supplemental realizations and logistic regressions; see

Supplemental S2). Estimated selection gradients from each re-

gression, with their associated standard error and P-value, became

the data for further analysis as described below. Multiple testing

was not a concern because it was the distribution of estimates

EVOLUTION FEBRUARY 2014 4 8 7



B. C. HALLER AND A. P. HENDRY

and significances, not the significance of any particular estimate,

that was of interest. We used univariate regressions, rather than

multiple regressions including both the neutral and selected traits,

because the two traits were not physically linked and were essen-

tially uncorrelated in the model realizations (see Supplemental S2,

The neutral trait). As implied earlier, we used SD-standardized

selection gradients, also called variance-standardized selection

gradients or selection intensities (Matsumura et al. 2012) and

symbolized βσ by Hereford et al. (2004). We did not use the al-

ternative method of mean-standardization (Hereford et al. 2004;

Matsumura et al. 2012) because the modeled traits are on an in-

terval scale, not a ratio scale (Houle et al. 2011); regardless, stan-

dardization is not relevant to our conclusions. We refer to selection

“gradients” throughout, rather than selection “differentials,” be-

cause the values have been standardized (Matsumura et al. 2012).

Summary statistics of the selection gradients, such as the

mean, median, standard deviation, and median absolute deviation

(MAD), were taken across the 50,000 post-burn-in generations

of each realization of the model for many of the per-generation

statistics computed. The MAD is a robust measure of statistical

dispersion, calculated as the median of the absolute deviations

about the median of a sample; following standard practice, we

scale it by 1.4826 for consistency with the standard deviation

(Hampel 1974; Rousseeuw and Croux 1993). We will refer to

the rate of detection of linear selection (i.e., the rate at which the

estimated linear selection gradient is statistically significant) in

the nonquadratic regressions using the symbol P(β∗), and the rate

of detection of quadratic selection in the quadratic regressions

using the symbol P(γ ∗). These two statistics directly addressed

our central question, from an empirical sampling perspective: they

are the rate at which we could statistically infer selection, whether

linear or quadratic, for a population known to be evolving on an

invariant stabilizing fitness function.

Realizations with and without competition were generally an-

alyzed separately due to the large qualitative effect of competition

on the model dynamics (see Effects of competition). Welch’s t-tests

and analysis of variance (ANOVA with main effects and two-way

interactions) were used to determine the significance and effect

size for the independent variables on dependent variables such as

P(β∗) and P(γ ∗). Independent variables included: (1) model pa-

rameters, Nj, VE, μ, α, ω, m, and when competition was enabled,

σ c; (2) the genetic architecture, G, used for a run; (3) the trait

examined, T, whether as, zs, an or zn; and (4) the mark-recapture

sample size, Ns (see Table 1). Paired t-tests were used in some

cases to compare the means of parallel groups (realizations with

vs. without competition, for example). In these cases, each realiza-

tion in one data set was paired with the (unique) realization in the

other data set with the same values for all independent variables.

Significance is relatively meaningless for simulation studies,

because any nonzero effect can be made significant with a suffi-

ciently large number of realizations. The emphasis in our results

is thus upon the effect size (given as η2; Levine and Hullett 2002),

not the significance, of the effects observed.

Results
A data set containing summary statistics and β and γ distributions

for each realization of the model is published on Dryad (Haller

and Hendry 2013). Because the raw model output far exceeds

Dryad’s 10 GB data set limit, online provisioning of the raw data

is not possible, but the data set provided suffices to reconduct the

analyses reported below.

Complete analysis of the neutral trait is presented in

Supplemental S2, The neutral trait. In summary, the mean rate

of detection of selection (linear or quadratic) on the neutral trait

was less than the expected type I error rate, and was signifi-

cantly less than the mean rate of detection of selection on the

selected trait. These observations confirm that the neutral trait

acted as a control, and that results for the selected trait are thus

indeed the result of selection. All analyses below examine the

selected trait. This presentation focuses on the largest effects,

with the remaining effects shown in the referenced tables and

figures.

EFFECTS OF COMPETITION

For the selected trait (genotypic value as and phenotypic value

zs, taken together), P(β∗) was significantly lower with competi-

tion than without (competition: mean = 0.0474, SD = 0.0112,

n = 2160, no competition: mean = 0.0824, SD = 0.0767,

n = 2160, paired t2159 = 22.0, P < 0.001; Fig. 3). Indeed, with

competition P(β∗) was only slightly greater than for the neu-

tral trait, although the difference was significant (selected trait:

mean = 0.0474, SD = 0.0112, n = 2160, neutral trait: mean =
0.0456, SD = 0.0088, n = 2160, one-sided unpaired t4091.1 = 5.93,

P < 0.001). P(γ ∗) was significantly lower with competition than

without (competition: mean = 0.1265, SD = 0.2013, n = 2160,

no competition: mean = 0.1464, SD = 0.2345, n = 2160, paired

t2159 = 3.05, P = 0.002; Fig. 4). Furthermore, the mean propor-

tion of quadratic selection detected that was stabilizing was lower

with competition than without (Fig. 4), indicating that competi-

tion caused a shift away from the detection of stabilizing selection,

toward the detection of disruptive selection (competition: mean =
0.3615, SD = 0.2670, n = 2091, no competition: mean = 0.7404,

SD = 0.2264, n = 2091, paired t2090 = −67.7, P < 0.001; only

pairs in which quadratic selection was detected for both realiza-

tions were included). In short, the model dynamics qualitatively

differed with versus without competition (see also Distribution

of selection gradient values, and Supplemental S2, Two case

studies). For this reason, the two cases are analyzed separately

below.
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I : Mutation rate, µ
10 5 10 3 10 5 10 3

no competition (*) competition (*)

H: Mutation effect size, 
0.05 0.5 1.0 0.05 0.5 1.0

no competition (*) competition

G: Genetic architecture, G

0.0

0.3

0.6

Q T C Q T C

no competition (*) competition (*)
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E: Trait, T

as zs as zs

no competition (*) competition (*)
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Figure 3. Effects of independent variables on the rate of detection of linear selection, P(β∗). Each panel shows effects without compe-

tition on the left, and with competition on the right, for: (A) environmental variance, VE; (B) fitness function width, ω; (C) competition

width, σ c; (D) mortality rate, m; (E) trait examined, T; (F) sample size, Ns; (G) genetic architecture, G; (H) mutation effect size, α; and (I)

mutation rate, μ. Parameters for which ANOVA indicates a significant effect are shown with stars (∗) at top (see Tables S2.1 and S2.3).

Boxes span the first to third quartiles, with a thick line at the median; whiskers extend to the most extreme data point no more than

1.5× the interquartile range from the box. Red lines indicate the threshold used to determine significance of individual selection gradient

estimates (α = 0.05); realizations above the red line detected linear selection more often than the expected type I error rate. Each panel is

based upon 4320 realizations, and thus the outliers shown are a small minority of realizations. Because the same P(β∗) values are plotted

in each panel, the combination of parameter values that produced most of the high-P(β∗) outliers may be readily ascertained: ω = 1,

m = 0.0, T = zs, and Ns = 1000.
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Figure 4. Effects of independent variables on the rate of detection of quadratic selection, P(γ∗). Each panel shows effects without

competition on the left, and with competition on the right, for: (A) environmental variance, VE; (B) fitness function width, ω; (C)

competition width, σ c; (D) mortality rate, m; (E) trait examined, T; (F) sample size, Ns; (G) genetic architecture, G; (H) mutation effect size,

α; and (I) mutation rate, μ. Parameters for which ANOVA indicates a significant effect are shown with stars (∗) at top (see Tables S2.5 and

S2.7). Boxes span the first to third quartiles, with a thick line at the median; whiskers extend to the most extreme data point no more

than 1.5× the interquartile range from the box. Red lines indicate the threshold used to determine significance of individual selection

gradient estimates (α = 0.05); realizations above the red line detected quadratic selection more often than the expected type I error

rate. Numbers above each column indicate the median proportion of detected quadratic selection that was stabilizing. More precisely,

the number is the median of per-realization scores across all realizations in the given column, where each per-realization score is the

proportion of generations, among only those generations for which quadratic selection was detected, for which the detected quadratic

selection was stabilizing (i.e., a negative estimate for γ ). Note that this metric weights all realizations equally, regardless of P(γ∗). Each

panel is based upon 4320 realizations, and thus the outliers shown are a small minority of the data. Because the same P(γ∗) values are

plotted in each panel, the combination of parameter values that produced most of the high-P(γ∗) outliers may be readily ascertained:

without competition, VE = 0.1, ω = 1, m = 0.0, T = zs, and Ns > 100; with competition, ω = 10, σ c = 0.5, m < 0.5, and Ns > 100.
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DETECTION OF LINEAR SELECTION: P(β∗)

Linear selection was not often detected in most realizations

(Fig. 3). Without competition, the median P(β∗) value was 0.0517,

although the variation among realizations was large (MAD =
0.00738, range 0.002–0.577). With competition, the median P(β∗)

was slightly lower, 0.0498, with less variation among realizations

(MAD = 0.00427, range 0.002–0.095). Although both medians

were close to the type I error rate, the high variation among real-

izations meant that selection could sometimes be detected above

sampling error.

Without competition, ANOVA with only main effects (see

Data analysis) explained 47.8% of variance in P(β∗), and all

independent variables were significant (Table S2.1). Detection of

linear selection was increased by a lower random mortality rate

m (η2 = 0.269; Fig. 3D), by the use of phenotypic rather than

genotypic values (η2 = 0.047; Fig. 3E), by a higher mutation

rate μ (η2 = 0.045; Fig. 3I), and by a smaller stabilizing fitness

function width ω (a narrower fitness peak; η2 = 0.071; Fig. 3B).

Other parameters had only small effects (η2 < 0.03; Table S2.1

and Fig. 3). Analysis of variance incorporating the 28 second-

order interaction terms (Table S2.2) explained an additional 31.4%

of variance, but the only interactions of large effect (η2 ≥ 0.03)

involved the mortality rate m (m∗ω, m∗T, m∗Ns, m∗μ). In all

these interactions, high random mortality obscured effects of the

other parameters (see Supplemental S2, Selective deaths and the

detection of selection).

With competition, ANOVA with only main effects explained

26.6% of variance in P(β∗), and all independent variables ex-

cept VE, ω, and α were significant (Table S2.3). Detection of

linear selection was increased by a lower mutation rate μ (η2 =
0.095; Fig. 3I), by the use of phenotypic rather than genetic values

(η2 = 0.073; Fig. 3E), and by the use of the quantitative genetic

architecture (η2 = 0.040; Fig. 3G). Other parameters had only

small effects (η2 < 0.03; Table S2.3 and Fig. 3). Analysis of vari-

ance incorporating the 36 second-order interaction terms (Table

S2.4) explained an additional 33.8% of variance. Interactions of

large effect (η2 ≥ 0.03) included ω∗σ c (increased detection with

σ c
∼= ω; see also Distribution of selection gradient values), ω∗T

(increased effect of T for ω = 1), ω∗G (increased effect of G for

ω = 10), m∗Ns (increased effect of Ns with smaller m), and T∗μ

(increased effect of T with smaller μ).

DETECTION OF QUADRATIC SELECTION: P(γ∗)

Quadratic selection was not often detected in most realizations

(Fig. 4). Without competition, the median P(γ ∗) value was 0.0513,

although the variation among realizations was large (MAD =
0.0178, range 0.000–1.000). With competition, the median P(γ ∗)

was slightly higher, 0.0542, also with high variation (MAD =
0.0183, range 0.000–0.999). Again, although both medians were

close to the type I error rate, the high variation among realizations

meant that selection could sometimes be detected above sampling

error.

Without competition, ANOVA with only main effects (see

Data analysis) explained 42.6% of variance in P(γ ∗), and all in-

dependent variables were significant (Table S2.5). Detection of

quadratic selection was increased by a smaller stabilizing fitness

function width ω (a narrower fitness peak; η2 = 0.132; Fig. 4B),

by the use by phenotypic rather than genetic values (η2 = 0.077;

Fig. 4E), by lower random mortality m (η2 = 0.084; Fig. 4D),

by higher environmental variance VE (η2 = 0.053; Fig. 4A),

and by a larger sample size Ns (η2 = 0.031; Fig. 4F). Other

parameters had only small effects (η2 < 0.03; Table S2.5 and

Fig. 4). The quadratic selection detected was always predomi-

nantly stabilizing (Fig. 4). Furthermore, higher rates of detection

of quadratic selection were generally associated with a higher

proportion of the detected selection being stabilizing (Fig. 4), al-

though this was not true for the effect of sample size (Fig. 4F).

Analysis of variance incorporating the 28 second-order interac-

tion terms (Table S2.6) explained an additional 35.8% of vari-

ance, but the only interactions of large effect (η2 ≥ 0.03) in-

volved the environmental variance VE and the fitness function

width ω (VE∗ω, VE∗T, ω∗m, ω∗T). In particular, smaller ω (a

narrower fitness peak) and higher VE amplified the effects of T

and m, and in combination they strongly increased detection of

quadratic selection (realizations with ω = 1 and VE = 0.1: n = 360,

median = 0.193, MAD = 0.249, range 0.000–1.000; other realiza-

tions: n = 1800, median = 0.0503, MAD = 0.0133, range 0.000–

0.998).

With competition, ANOVA with only main effects explained

33.9% of the variance in P(γ ∗), and all independent variables

except VE and μ were significant (Table S2.7). Detection of

quadratic selection was increased by a larger stabilizing fitness

function width ω (a broader fitness peak; η2 = 0.107; Fig. 4B),

by a smaller competition width σ c (η2 = 0.076; Fig. 4C), by a

larger sample size Ns (η2 = 0.059; Fig. 4F), and by the use of the

triallelic genetic architecture (η2 = 0.058; Fig. 4G). Other param-

eters had only small effects (η2 < 0.03; Table S2.7 and Fig. 4).

The quadratic selection detected was now always predominantly

disruptive (Fig. 4; see Distribution of selection gradient values).

Higher rates of detection of quadratic selection were associated

with a higher proportion of the detected selection being disrup-

tive in some cases (ω, σ c, Ns), but with a higher proportion being

stabilizing in other cases (VE, T), and with no clear effect for the

remaining parameters (Fig. 4). Analysis of variance incorporating

the 36 second-order interaction terms (Table S2.8) explained an

additional 35.8% of variance, but the only interactions of large

effect (η2 ≥ 0.03) involved ω and σ c (ω∗σ c, ω∗G, σ c∗G). In par-

ticular, larger ω and smaller σ c amplified the effects of the genetic

architecture, and in combination they strongly increased detection

of quadratic selection (realizations with ω = 10 and σ c = 0.5:

EVOLUTION FEBRUARY 2014 4 9 1



B. C. HALLER AND A. P. HENDRY

-0.15 0.00 0.15

0
1e

+0
7

4.32e+07

-0.15 0.00 0.15
0

1e
+0

7

1.43e+07

-0.3 0.0 0.3

0
1e

+0
7

5.25e+07

-0.3 0.0 0.3

0
1e

+0
7

1.94e+07

No competition Competition
A

bs
ol

ut
e 

fr
eq

ue
nc

y

Quadratic gradient ( )

Linear gradient ( )

A B

C D

Figure 5. Absolute frequency histograms of linear selection gra-

dients, β, and quadratic selection gradients, γ , for the selected trait

(as and zs, taken together), across all realizations of the model: (A)

frequency of β with no competition, (B) frequency of β with com-

petition, (C) frequency of γ with no competition, (D) frequency of

γ with competition. In all panels, black shading shows the portion

of estimates of β or γ that are significant (P < 0.05). Note that the

central peak in all panels is off of the scale; many nonsignificant

gradient estimates close or equal to zero were observed.

n = 540, median = 0.161, MAD = 0.147, range 0.0443–0.999;

other realizations: n = 1620, median = 0.0507, MAD = 0.0109,

range 0.000–0.665).

DISTRIBUTION OF SELECTION GRADIENT VALUES

Following Kingsolver et al. (2001) and others (see Introduction),

and in the “virtual ecologist” spirit, we examined frequency dis-

tribution histograms of selection gradients β and γ . These dis-

tributions convey the signs of gradients (whether detected selec-

tion is more often stabilizing or disruptive, in particular), their

magnitudes (whether detected selection is more often relatively

strong or weak), and their statistical significances. The distribu-

tion of selection gradient estimates (significant and nonsignifi-

cant combined) for the selected trait (as and zs taken together)

resembled a leptokurtic double exponential (Laplace) distribu-

tion with a unimodal peak at zero, whether for β or γ , with

or without competition (Fig. 5). The leptokurtic shape is the

result of the combination of roughly Gaussian distributions of

varying breadths from different model realizations, as detailed

in Supplemental S2, Effects of parameters on the selection gra-

dient distribution; perhaps the leptokurtosis observed in empir-

ical meta-analyses (e.g., Kingsolver et al. 2001) could be sim-

ilarly explained. Most of our observed selection gradient esti-

mates were not significant, however, as shown earlier. Without

competition, the distribution of significant β estimates was uni-

modal, symmetric, and leptokurtic with a peak at zero (Fig. 5A).

With competition, these estimates formed a wide, flattened bi-

modal distribution symmetric around zero (Fig. 5B). Without

competition, significant γ estimates were almost always nega-

tive, and could be close to zero (Fig. 5C). With competition, these

estimates were usually positive, but were bimodal around zero

(Fig. 5D).

Histograms were also generated for subsets of the model

realizations, to show the effects of particular model parameters

on the distributions of β and γ (Fig. 6). In particular, a smaller

stabilizing fitness function width ω (a narrower fitness peak) pro-

duced a higher rate of detection of stabilizing selection, both

without competition (Fig. 6A vs. Fig. 6B) and with competition

(Fig. 6C vs. 6D). With competition, however, a wider fitness

function (a broader fitness peak) not only decreased detection of

stabilizing selection, it also increased the detection of disruptive

selection (Fig. 6C vs. 6D; Fig. 4B). The relative widths of the fit-

ness and competition functions, ω versus σ c, were important here

(see also Detection of quadratic selection); when the competition

function was much narrower than the fitness function (σ c � ω),

the quadratic selection detected was overwhelmingly disruptive

(Fig. 6F), whereas a fitness function much narrower than the com-

petition function (σ c � ω) overwhelmingly produced detection

of stabilizing selection (Fig. 6G). When the two widths were rel-

atively commensurate (σ c
∼= ω), quadratic selection was rarely

detected, but was a mix of both types (Fig. 6E,H).

Histograms showing the effects of other parameters were

also generated (see Supplemental S2, Effects of parameters on the

selection gradient distribution; Figs. S2.4–S2.12). Those results

are in agreement with the effects of parameters that we present

earlier; they also confirm that the environmental variance VE,

genetic architecture G, mutational effect size α, and mutation rate

μ had only small effects upon selection gradient distributions

compared to the other parameters.

OTHER RESULTS

Results for additional amplifying and supporting analyses are pro-

vided in Supplemental S2, summarized as follows. The neutral

trait: the neutral trait was uncorrelated with the selected trait, and

exhibited detectable selection at close to the type I error rate. The

strength of stabilizing selection: the realized selection strength

approximated empirical values. Effects of mutational variance:

minor effects of mutational variance on the detection of selec-

tion. Effects of heritability: emergent heritabilities approximated

empirical values, but had only minor effects on the detection

4 9 2 EVOLUTION FEBRUARY 2014



SELECTION AND THE LIMITS OF DETECTION

0
1e

+0
7

2.24e+07

-0.3 0.0 0.3

0
1e

+0
7

3.01e+07

0
1e

+0
7

1.54e+07

-0.5 0.0 0.5

0
1e

+0
7

1.17e+07

0
4e

+0
6

5.91e+06

-0.4 0.0 0.4

0
4e

+0
6

0
4e

+0
6

7.66e+06

-0.4 0.0 0.4

0
4e

+0
6

5.64e+06

A
bs

ol
ut

e 
fr

eq
ue

nc
y

 =
 1

0.
0 

(w
ea

k)
 =

 1
.0

 (s
tro

ng
)

c =
 2

.0
 (b

ro
ad

)

c =
 0

.5
 (n

ar
ro

w
)

No competition Competition

Quadratic selection gradient ( )

A

B

C

D

E

F

G

H

Figure 6. Effects of the fitness function width ω and the competition width σ c on the distribution of estimates of γ . Panels show absolute

frequency histograms of quadratic selection gradients, γ , for the selected trait (as and zs, taken together), across various subsets of the

model realizations. The top row (A, C, E, G) incorporate realizations with strong selection (ω = 1.0); the bottom row (B, D, F, H) use weak

selection (ω = 10.0). The leftmost column (A, B) uses realizations without competition, whereas the second column (C, D) uses realizations

with competition. The remaining panels (E–H) explore the joint effect of the competition width, for realizations with competition, given

a particular strength of selection: the third column (E, F) uses realizations with narrow competition (σ c = 0.5), whereas the rightmost

column (G, H) uses realizations with broad competition (σ c = 2.0). In all panels, black shading shows the portion of estimates of γ that

are significant (P < 0.05). Note that the central peak in most panels is off of the scale; many nonsignificant gradient estimates close or

equal to zero were observed.

of selection. Selective deaths and the detection of selection: a

“signal-to-noise ratio” perspective on our results. Effects of pa-

rameters on the selection gradient distribution: parameter values

affected the distribution of selection gradients. Two case studies:

two particular realizations. Autocorrelation and reproducibility:

results were reproducible; temporal autocorrelation was limited

and did not cause bias. Logistic versus linear regression: logis-

tic regressions produced qualitatively similar results, with less-

frequent detection of selection and smaller gradient estimates.

The intrinsic rate of evolution: the observed intrinsic rate of evo-

lution (Gingerich 1993) was a function of sample size alone.

Temporal variation in selection: temporal variation in selection in

our model was largely, but not entirely, due to sampling error. Ef-

fects of large population and sample size: a larger population size

had little effect on our results; sample size, not population size, is

what matters, but even a substantially larger sample size does not

yield reliable detection of stabilizing selection. Effects of small

population size: similarly, a smaller population size had little ef-

fect; sample size is what matters. Estimation of fitness landscape

parameters: estimation of the width of the stabilizing fitness func-

tion and the position of the phenotypic optimum from selection

gradients.

Discussion
Stasis is commonly observed on geological timescales, suggest-

ing that stabilizing fitness landscapes are common, and yet sta-

bilizing selection is detected infrequently in empirical studies of

natural populations. To investigate this apparent disconnect, we

constructed an individual-based model of a population subject to

an invariant stabilizing fitness function (and optionally also neg-

ative frequency-dependent selection), and then applied an “em-

pirical” sampling protocol in each generation to determine the

inferred pattern of selection. Our results support the hypothesis

that stabilizing selection will be infrequently detected using stan-

dard regression-based methods even when the fitness function on

which the population has evolved is stabilizing. We first discuss

our model results, and then synthesize them to form a larger pic-

ture regarding the limits of detection of stabilizing selection and

implications for the paradox of stasis.

THE FIVE POSTULATES

The five postulates motivating our hypothesis that stabilizing

selection should be detected only infrequently were confirmed

in our realizations. First, broader fitness peaks hindered the
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detection of stabilizing selection, an effect most clearly seen with-

out competition (Fig. 4B). With competition, quadratic selection

was sometimes detected more frequently, but this was due to in-

creased detection of disruptive selection; detection of stabilizing

selection decreased as expected (Fig. 6C,D). Second, the stochas-

tic wandering of populations in the vicinity of the fitness peak

produced the episodic detection of directional selection. This ef-

fect was particularly pronounced when the population was more

likely to encounter the shoulders of the fitness peak (narrower

fitness peaks, higher mutational variance, and higher environ-

mental variance) or when statistical power was higher (lower

random mortality, larger sample sizes, and the use of pheno-

typic values). Third, random mortality hindered the detection of

selection, whether linear or quadratic (Figs. 3D, 4D). In addi-

tion, without competition high random mortality also reduced the

rate at which quadratic selection, when detected, was stabilizing

(Fig. 4D). Fourth, the addition of negative frequency-dependent

selection produced squashed stabilizing selection (SSS) that de-

creased detection of stabilizing selection and increased detection

of disruptive selection (Fig. 5C vs. Fig. 5D). More specifically, the

relative strengths of stabilizing selection and negative frequency-

dependent selection predicted whether the fitness peak with SSS

would be dimpled or merely flattened (Dieckmann and Doebeli

1999), and whether the quadratic selection detected would be pre-

dominantly stabilizing, disruptive, or a mixture of the two (Fig. 6).

Fifth, smaller sample sizes hindered the detection of selection,

whether linear or quadratic (Figs. 3F, 4F). However, even sample

sizes of 2500 (see Supplemental S2, Effects of large population

and sample size) generally produced infrequent detection of se-

lection, so although small sample sizes make selection extremely

hard to detect, even very large sample sizes are not a panacea, due

to the effects of the other four postulates.

PATTERNS OF SELECTION WITHOUT COMPETITION

In the absence of competition or other negative frequency-

dependent selection, the modeled population was free to adapt

to the fitness peak as closely as was allowed by mutation and

drift. Even with a wide stabilizing fitness function, the popula-

tion’s variance was often quite small compared to the width of

the fitness peak (Fig. S1.1a; see Supplemental S2, The strength

of stabilizing selection), and selective deaths were mostly among

the few individuals in the tails of the phenotypic distribution (Fig.

S2.13b). As expected, stabilizing selection was detected more of-

ten when the stabilizing fitness function was narrower (Figs. 4B,

6), but even then detection was infrequent. This reflects the fact

that once a population is well adapted, most genotypes deviating

substantially from the fitness peak have been eliminated. Selection

“erases its traces”; the phenotypic variance evolves in response to

stabilizing selection until, at equilibrium, selective deaths rarely

occur and stabilizing selection is unlikely to be detected.

Despite the fact that the population was well adapted to an

invariant stabilizing fitness function, directional selection was

sometimes detected above sampling error. Because the popula-

tion evolved a narrow phenotypic range relative to the fitness

function width, the mean could drift stochastically in the vicinity

of the optimum until eventually limited by directional selection

(Supplemental Movie S1.1). In fact, drift often took the popula-

tion into regions of directional selection for extended periods of

time (Fig. S2.13a). The population was often unresponsive to this

directional selection because the selection was extremely weak,

as evidenced by the fact that directional selection was often not

detected even when the population was at its maximum excursion

from the optimum. With a Gaussian fitness function, the strength

of directional selection is proportional to the distance of the popu-

lation phenotypic mean from the optimum (Lande 1980); here the

population never wandered far enough for directional selection

to become strong enough to be easily detectable. This illustrates

that very weak selection suffices to keep populations in the vicin-

ity of fitness peaks (Lande 1976). Directional selection was, of

course, more likely to be detected with a narrow stabilizing fitness

function (Fig. 3B; see Supplemental S2, Temporal variation in se-

lection), because the population’s stochastic wandering was then

more likely to carry it into a region in which it would experience

many selective deaths.

PATTERNS OF SELECTION WITH COMPETITION

The addition of negative frequency-dependent selection due to

intraspecific competition qualitatively changed the model dy-

namics. With competition, many selective deaths occurred—

sometimes more than half of the population per generation, al-

though often much lower (Fig. S2.3c). Although stabilizing selec-

tion causes mortality mainly for extreme phenotypes, competition

causes mortality mainly for common phenotypes; the “messages”

from these two causes of death conflict (Bürger 2002a; Moreno-

Rueda 2009). This conflict made detection of stabilizing selection

even less likely, and detection of disruptive selection more likely,

although still rare (Figs. 4–6).

With competition, the population still wandered in the vicin-

ity of the fitness peak, but now more rapidly than without compe-

tition (Figs. S2.13 vs. S2.14). This was because the mechanism

driving the wander was different: without competition it was drift,

but with competition it was selection. With competition, varia-

tion in the phenotypic distribution (due to demographic stochas-

ticity) was immediately compensated for by selection, because

too-common phenotypes suffered decreased fitness and too-rare

phenotypes enjoyed heightened fitness. Detection of directional

selection was almost nonexistent for most realizations because of

this tight feedback (Figs. 3, 5B). Although the magnitude of ex-

cursions from the optimum was similar to that observed without

competition, the magnitude relative to the phenotypic variance of
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the population was much smaller (Fig. S2.13a vs. Fig. S2.14a),

and what signal of directional selection existed was obscured by

the many selective deaths due to negative frequency dependence.

SQUASHED STABILIZING SELECTION

A population under disruptive selection on a static fitness land-

scape would occupy an unstable equilibrium; the population

would rapidly escape the fitness minimum by evolving toward

one phenotypic extreme or the other (but see Felsenstein 1979).

For this reason, disruptive selection has often been expected to

be rare (Endler 1986; Bolnick and Lau 2008), making it diffi-

cult to explain why it is detected at least as often as stabilizing

selection in natural populations (Kingsolver et al. 2001). How-

ever, negative frequency-dependent selection can cause a more

dynamic type of disruptive selection that follows the population

phenotypic mean, and if this is combined with stabilizing selec-

tion, a fitness minimum that is a stable equilibrium can result

(Slatkin 1979; Abrams et al. 1993; Bürger 2002a,b, 2005; Bürger

and Gimelfarb 2004; Rueffler et al. 2006; Schneider 2006). Neg-

ative frequency-dependent selection in our model is due to in-

traspecific competition, but it can also result from predation, par-

asitism, sexual selection, environmental heterogeneity, or other

ecological causes (Ayala and Campbell 1974; Allen 1988; Brown

and Pavlovic 1992; Abrams et al. 1993; Dieckmann and Doebeli

1999; Doebeli and Dieckmann 2000; Bolnick 2004; Spichtig and

Kawecki 2004; Gray and McKinnon 2007). We call the combi-

nation of stabilizing selection and negative frequency-dependent

selection “squashed stabilizing selection” (SSS; Fig. 1E).

Squashed stabilizing selection is a combination of stabiliz-

ing selection, which depends on the environment, and negative

frequency-dependent selection, which depends on the phenotypic

distribution of the population. Like disruptive selection, SSS in-

creases genetic variance; however, a population under SSS can

escape the fitness minimum only through speciation or conceptu-

ally related responses, such as sexual dimorphism (Bolnick and

Doebeli 2003; Kopp and Hermisson 2006; Cooper et al. 2011).

Like stabilizing selection, SSS constrains the population to the

vicinity of a phenotypic optimum determined by the environment;

however, for SSS this environmental “optimum” can be a fitness

minimum for a population occupying it (Abrams et al. 1993).

Squashed stabilizing selection is closely related to the con-

cepts of stable fitness minima (Abrams et al. 1993) and evolution-

ary branching points (Geritz et al. 1998). Stable fitness minima

and evolutionary branching points, however, are always fitness

minima, whereas the negative frequency-dependent selection in

SSS may merely flatten the fitness peak somewhat, without dim-

pling it downward into a local fitness minimum. Furthermore, SSS

is defined by the mechanisms of selection acting on the population

(stabilizing selection and negative frequency-dependent selec-

tion), whereas stable fitness minima and evolutionary branching

points are defined by their evolutionary effects, such as conver-

gence and stability (or lack thereof), and thus might (in principle,

at least) be produced by other types of selection.

Competition in our model caused SSS, observed as a flat-

tened or dimpled fitness peak (Fig. S1.1c; Supplemental Movie

S1.2). Whether the peak shape was dimpled or merely flattened

depended on the relative widths of the stabilizing fitness function

and the competition function (Dieckmann and Doebeli 1999). In

either case, however, SSS decreased detection of stabilizing se-

lection and increased detection of disruptive selection (Figs. 4–6).

The few realizations in which disruptive selection was frequently

detected all involved SSS, suggesting that SSS might also cause

the disruptive selection detected in nature. But if SSS is to ex-

plain the frequency at which disruptive selection is detected in

nature relative to stabilizing selection, it must be fairly common.

Because SSS is expected to have important effects on standing

genetic variation and diversification, this is an important direction

to pursue in future research.

COMPARISONS TO SELECTION ESTIMATES FROM

NATURAL POPULATIONS

The distributions of selection coefficients generated in our re-

alizations share several properties with the distributions seen in

meta-analyses of selection observed in nature. First, selection of

all types was only infrequently detected in nearly all realiza-

tions (Figs. 3–5), as in nature (e.g., Kingsolver et al. 2001). This

similarity demonstrates that the infrequent detection of stabilizing

selection does not contradict the hypothesis that most natural pop-

ulations are well adapted to relatively stable fitness peaks (Estes

and Arnold 2007; Hendry and Gonzalez 2008). Detection of selec-

tion (linear or quadratic) was aided by low random mortality and

large sample size, but remained infrequent for most realizations

even with favorable values of these parameters (Figs. 3, 4). Sec-

ond, neither stabilizing nor disruptive selection predominated in

the selection detected across all of our realizations (Fig. 5)—as is

also the case in nature (e.g., Kingsolver et al. 2001). This suggests

that natural populations are often subject to SSS, because it seems

the most likely source of disruptive selection. Third, directional

selection was variable both with and without competition, but was

typically very weak (Figs. 5A,B, S2.19, S2.20; see Supplemental

S2, Temporal variation in selection). This finding might inform

the results of Siepielski et al. (2009) in showing that selection es-

timates can be highly variable even with a static fitness landscape.

Morrissey and Hadfield (2012) emphasize that the appearance of

temporal variation in selection might be mainly due to sampling

error. Sampling error (Fig. S2.20c) certainly played a role in our

realizations, but the stochastic wandering of the population in the

vicinity of the adaptive peak was also detectable (Figs. 3, S2.13;

see Supplemental S2, Temporal variation in selection).
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In other important respects, our observed selection gradi-

ent distributions differed from those reported in meta-analyses of

estimates from nature (e.g., Kingsolver et al. 2001). In particu-

lar, our distributions were narrower, reflecting weaker selection

gradients—especially for directional selection. This property is an

expected consequence of our model, which was designed to test

whether stabilizing selection would be difficult to detect even in a

population evolving on an invariant stabilizing fitness landscape,

for which stabilizing selection should be most readily detectable.

Our model design is therefore conservative with respect to our

hypothesis; the addition of factors such as movement of the phe-

notypic optimum, which might produce more realistic levels of

directional selection, would weaken that conservatism. Also, our

reported distributions were aggregated across all realizations of

the model, whereas particular parameter values yielded substan-

tially different distributions (Figs. S2.4–S2.12), some of which

are closer to empirical distributions in nature. Overall, our inten-

tion was not to reproduce empirical distributions to any degree of

exactness, but rather to show that some of their more surprising

properties—the low rate of detection of stabilizing selection and

the surprisingly high rate of detection of disruptive selection—are

not at odds with stabilizing fitness landscapes.

Our model has several direct consequences for the empirical

measurement and interpretation of selection. (1) The observation

of temporal variation—even beyond sampling error—in the direc-

tion, magnitude, or significance of selection gradients does not

necessarily mean that the underlying fitness function is chang-

ing. (2) The observation of disruptive selection does not imply

that the population is not also subject to an underlying stabiliz-

ing fitness function that maintains stability in the long run. (3)

These inferential problems will not necessarily be resolved by

larger—even much larger—sample sizes; new methods might be

needed (Figs. 3F, 4F; see Supplemental S2, Effects of large pop-

ulation and sample size). (4) The idea of fitting quadratic fitness

functions to decide whether selection is disruptive or stabiliz-

ing is too limiting (Schluter 1988; Schluter and Nychka 1994;

Brodie et al. 1995; Arnold et al. 2001; Kingsolver et al. 2012).

SSS is probably common in nature, and perhaps we can find its

signatures using methods such as cubic splines (Schluter 1988),

projection pursuit regression (Schluter and Nychka 1994), tensor

decomposition (Calsbeek 2012), or quartic polynomial regres-

sions (perhaps fitting the dimpled shape of strong SSS). Martin

and Wainwright (2013) provide an excellent example, finding

what appears to be SSS due to competition in Cyprinodon pup-

fishes; more such studies are needed (see other possible examples

in Schluter 1994; Blows et al. 2003; Bolnick 2004; Bolnick and

Lau 2008; Hendry et al. 2009; Moreno-Rueda 2009; Martin and

Pfennig 2012). (5) Greater awareness is needed of the distinc-

tion between the true fitness landscape versus the apparent fitness

landscape that is revealed by the observed pattern of selection.

We must find new techniques, including experimental manipu-

lation (Martin and Wainwright 2013), to deduce the true fitness

landscape.

RESOLVING THE PARADOX OF STASIS

The paradox of stasis has long been an outstanding problem in

evolutionary biology. Acceptance of stabilizing selection as a so-

lution to the paradox has been hindered by the infrequent detection

of stabilizing selection in nature—and the detection, at similar

or greater frequency, of directional and disruptive selection. We

resolve this difficulty, and thereby remove that key obstacle to

acceptance of stabilizing selection as a general solution to the

paradox of stasis. Specifically, we show that observed patterns

of selection in nature—the low rate of detection of stabilizing

selection, and the detection at similar or greater frequency of di-

rectional and disruptive selection—do not conflict with the idea

that populations are commonly maintained near fitness peaks by

stabilizing selection. On the contrary: if stabilizing selection is

common, but is often mixed with negative frequency-dependent

selection to produce SSS, then our model readily explains the

observed pattern of selection in nature. We have not compared

stabilizing selection to alternative mechanisms that might pro-

duce macroevolutionary stasis (see Introduction), in the manner

of Estes and Arnold (2007) or Uyeda et al. (2011). Rather, we have

shown that, at the microevolutionary level, the idea that stabiliz-

ing selection is common (and thus might resolve the paradox of

stasis) is not contradicted by empirical observations of selection

in natural populations.

We suggest several important future directions for research.

First, we modeled only a temporally invariant stabilizing fitness

function, whereas adaptive peaks doubtless sometimes move. One

could thus ask: given a change (gradual or abrupt) in the environ-

mental optimum for a trait under stabilizing selection (following,

e.g., Lynch et al. 1991; Collins et al. 2007; Kopp and Hermisson

2007), can the change in optimum be observed in the pattern of

selection detected, relative to the expected pattern for a stationary

optimum? Second, another hypothesis regarding the infrequent

detection of stabilizing selection in nature is that stabilizing se-

lection acts not on univariate traits but on their multivariate combi-

nations (Phillips and Arnold 1989; Blows and Brooks 2003). This

hypothesis seems orthogonal to ours, and both might well be true.

A model of composite traits subject to a multivariate stabilizing

fitness function might further illuminate this hypothesis.

Selection is at the very heart of evolutionary biology, and yet

the details of how it acts remain poorly understood, as exemplified

by the durability of the paradox of stasis. A redoubling of efforts

to measure and understand selection is needed, with new ideas

and approaches rather than just larger sample sizes. We hope to

have provided some ideas for directions in which to proceed.

4 9 6 EVOLUTION FEBRUARY 2014



SELECTION AND THE LIMITS OF DETECTION

ACKNOWLEDGMENTS
The authors thank D. I. Bolnick, S. J. Arnold, T. F. Hansen, K. M. Gotanda,
L.-M. Chevin, H. D. Haller, and two anonymous reviewers for comments
on a previous draft of this manuscript. The authors also thank F. J. Janzen,
H. S. Stern, U. Dieckmann, V. Fazalova, D. I. Bolnick, and M. W. Blows
for helpful communications. BCH is supported by a National Science
Foundation Graduate Research Fellowship under Grant No. 1038597.
APH is supported by the Natural Sciences and Engineering Research
Council of Canada.

LITERATURE CITED
Abrams, P. A., H. Matsuda, and Y. Harada. 1993. Evolutionarily unstable

fitness maxima and stable fitness minima of continuous traits. Evol.
Ecol. 7:465–487.

Ackerly, D. D. 2003. Community assembly, niche conservatism, and adaptive
evolution in changing environments. Int. J. Plant Sci. 164:S165–S184.

Allen, J. A. 1988. Frequency-dependent selection by predators. Philos. Trans.
R. Soc. Lond. B-Biol. Sci. 319:485–503.

Arnold, S. J., M. E. Pfrender, and A. G. Jones. 2001. The adaptive landscape
as a conceptual bridge between micro- and macroevolution. Genetica
112:9–32.

Ayala, F. J., and C. Campbell. 1974. Frequency-dependent selection. Annu.
Rev. Ecol. Evol. Syst. 5:115–138.

Barton, N. 1989. The divergence of a polygenic system subject to stabilizing
selection, mutation and drift. Genet. Res. 54:59–77.

Benton, M. J., and P. N. Pearson. 2001. Speciation in the fossil record. Trends
Ecol. Evol. 16:405–411.

Blows, M. W., and R. Brooks. 2003. Measuring nonlinear selection. Am. Nat.
162:815–820.

Blows, M. W., R. Brooks, and P. G. Kraft. 2003. Exploring complex fitness
surfaces: multiple ornamentation and polymorphism in male guppies.
Evolution 57:1622–1630.

Bolnick, D. I. 2004. Can intraspecific competition drive disruptive selection?
An experimental test in natural populations of sticklebacks. Evolution
58:608–618.

Bolnick, D. I., and M. Doebeli. 2003. Sexual dimorphism and adaptive speci-
ation: two sides of the same ecological coin. Evolution 57:2433–2449.

Bolnick, D. I., and O. L. Lau. 2008. Predictable patterns of disruptive selection
in stickleback in postglacial lakes. Am. Nat. 172:1–11.

Bradshaw, A. D. 1991. Genostasis and the limits to evolution. Philos. Trans.
R. Soc. Lond. B-Biol. Sci. 333:289–305.

Brodie, E. D., A. J. Moore, and F. J. Janzen. 1995. Visualizing and quantifying
natural selection. Trends Ecol. Evol. 10:313–318.

Brown, J. S., and N. B. Pavlovic. 1992. Evolution in heterogeneous envi-
ronments: effects of migration on habitat specialization. Evol. Ecol.
6:360–382.

Bürger, R. 1986. On the maintenance of genetic variation: global analysis of
Kimura’s continuum-of-alleles model. J. Math. Biol. 24:341–351.

———. 1998. Mathematical properties of mutation-selection models. Genet-
ica 102–3:279–298.

———. 2002a. Additive genetic variation under intraspecific competition and
stabilizing selection: a two-locus study. Theor. Popul. Biol. 61:197–213.

———. 2002b. On a genetic model of intraspecific competition and stabilizing
selection. Am. Nat. 160:661–682.

———. 2005. A multilocus analysis of intraspecific competition and stabi-
lizing selection on a quantitative trait. J. Math. Biol. 50:355–396.

Bürger, R., and A. Gimelfarb. 1999. Genetic variation maintained in multi-
locus models of additive quantitative traits under stabilizing selection.
Genetics 152:807–820.

———. 2004. The effects of intraspecific competition and stabilizing selection
on a polygenic trait. Genetics 167:1425–1443.

Bürger, R., and R. Lande. 1994. On the distribution of the mean and variance
of a quantitative trait under mutation-selection-drift balance. Genetics
138:901–912.

Bürger, R., G. P. Wagner, and F. Stettinger. 1989. How much heritable variation
can be maintained in finite populations by mutation-selection balance?
Evolution 43:1748–1766.

Calsbeek, B. 2012. Exploring variation in fitness surfaces over time or space.
Evolution 66:1126–1137.

Charlesworth, B., R. Lande, and M. Slatkin. 1982. A neo-Darwinian com-
mentary on macroevolution. Evolution 36:474–498.

Collins, S., J. de Meaux, and C. Acquisti. 2007. Adaptive walks toward a
moving optimum. Genetics 176:1089–1099.

Cooper, I. A., R. T. Gilman, and J. W. Boughman. 2011. Sexual dimorphism
and speciation on two ecological coins: patterns from nature and theo-
retical predictions. Evolution 65:2553–2571.

Cresswell, J. E. 2000. Manipulation of female architecture in flowers reveals
a narrow optimum for pollen deposition. Ecology 81:3244–3249.

Darwin, C. 1859. The origin of species by means of natural selection, or the
preservation of favoured races in the struggle for life. J. Murray, Lond.

Day, T., and K. A. Young. 2004. Competitive and facilitative evolutionary
diversification. Bioscience 54:101–109.

Dieckmann, U., and M. Doebeli. 1999. On the origin of species by sympatric
speciation. Nature 400:354–357.

Doebeli, M., and U. Dieckmann. 2000. Evolutionary branching and sympatric
speciation caused by different types of ecological interactions. Am. Nat.
156:S77–S101.

Eldredge, N., and S. J. Gould. 1972. Punctuated equilibria: an alternative
to phyletic gradualism. Pp. 82–115 in T. J. M. Schopf, ed. Models in
paleobiology. Freeman, Cooper & Co., San Francisco, CA.

Eldredge, N., J. N. Thompson, P. M. Brakefield, S. Gavrilets, D. Jablonski,
J. B. C. Jackson, R. E. Lenski, B. S. Lieberman, M. A. McPeek, and
W. Miller. 2005. The dynamics of evolutionary stasis. Paleobiology
31:133–145.

Endler, J. A. 1986. Natural selection in the wild. Princeton Univ. Press, Prince-
ton, NJ.

Erwin, D. H., and R. L. Anstey. 1995. Speciation in the fossil record. Pp. 11–
38 in D. H. Erwin and R. L. Anstey, eds. New approaches to speciation
in the fossil record. Columbia Univ. Press, New York.

Estes, S., and S. J. Arnold. 2007. Resolving the paradox of stasis: models with
stabilizing selection explain evolutionary divergence on all timescales.
Am. Nat. 169:227–244.

Felsenstein, J. 1979. Excursions along the interface between disruptive and
stabilizing selection. Genetics 93:773–795.

Foley, P. 1992. Small population genetic variability at loci under stabilizing
selection. Evolution 46:763–774.

Friedman, W. E. 2009. The meaning of Darwin’s “abominable mystery”. Am.
J. Bot. 96:5–21.

Futuyma, D. J. 2010. Evolutionary constraint and ecological consequences.
Evolution 64:1865–1884.

Gale, J. S., and M. J. Kearsey. 1968. Stable equilibria under stabilising selec-
tion in the absence of dominance. Heredity 23:553–561.

Geritz, S. A. H., É. Kisdi, G. Meszena, and J. A. J. Metz. 1998. Evolution-
arily singular strategies and the adaptive growth and branching of the
evolutionary tree. Evol. Ecol. 12:35–57.

Gingerich, P. D. 1993. Quantification and comparison of evolutionary rates.
Am. J. Sci. 293A:453–478.

———. 2001. Rates of evolution on the time scale of the evolutionary process.
Genetica 112:127–144.

———. 2009. Rates of evolution. Annu. Rev. Ecol. Evol. Syst. 40:657–675.

EVOLUTION FEBRUARY 2014 4 9 7



B. C. HALLER AND A. P. HENDRY

Gould, S. J., and N. Eldredge. 1977. Punctuated equilibria: the tempo and
mode of evolution reconsidered. Paleobiology 3:115–151.

———. 1993. Punctuated equilibrium comes of age. Nature 366:223–227.
Gray, S. M., and J. S. McKinnon. 2007. Linking color polymorphism main-

tenance and speciation. Trends Ecol. Evol. 22:71–79.
Haller, B. C., and Hendry, A. P. 2013. Data from: solving the paradox of

stasis: squashed stabilizing selection and the limits of detection. Dryad
doi: 10.5061/dryad.0jj03.

Hampel, F. R. 1974. The influence curve and its role in robust estimation. J.
Am. Stat. Assoc. 69:383–393.

Hansen, T. F. 2012. Adaptive landscapes and macroevolutionary dynamics.
Pp. 205–226 in E. I. Svensson, and R. Calsbeek, eds. The adaptive
landscape in evolutionary biology. Oxford Univ. Press, Oxford, U.K.

Hansen, T. F., and D. Houle. 2004. Evolvability, stabilizing selection, and the
problem of stasis. Pp. 130–154 in M. Pigliucci, and K. Preston, eds.
Phenotypic integration: studying the ecology and evolution of complex
phenotypes. Oxford Univ. Press, New York.

Heinz, S. K., R. Mazzucco, and U. Dieckmann. 2009. Speciation and the
evolution of dispersal along environmental gradients. Evol. Ecol. 23:53–
70.

Hendry, A. P., and A. Gonzalez. 2008. Whither adaptation? Biol. Philos.
23:673–699.

Hendry, A. P., S. K. Huber, L. F. De León, A. Herrel, and J. Podos. 2009.
Disruptive selection in a bimodal population of Darwin’s finches. Proc.
R. Soc. Biol. Sci. Ser. B 276:753–759.

Hereford, J., T. F. Hansen, and D. Houle. 2004. Comparing strengths of
directional selection: how strong is strong? Evolution 58:2133–2143.

Hersch, E. I., and P. C. Phillips. 2004. Power and potential bias in field studies
of natural selection. Evolution 58:479–485.

Holt, R. D., and M. S. Gaines. 1992. Analysis of adaptation in heterogeneous
landscapes: implications for the evolution of fundamental niches. Evol.
Ecol. 6:433–447.

Houle, D., C. Pelabon, G. P. Wagner, and T. F. Hansen. 2011. Measurement
and meaning in biology. Q. Rev. Biol. 86:3–34.

Hunt, G. 2007. The relative importance of directional change, random walks,
and stasis in the evolution of fossil lineages. Proc. Natl. Acad. Sci.
U.S.A. 104:18404–18408.

———. 2008. Gradual or pulsed evolution: when should punctuational ex-
planations be preferred? Paleobiology 34:360–377.

Hunt, G., M. A. Bell, and M. P. Travis. 2008. Evolution toward a new adaptive
optimum: phenotypic evolution in a fossil stickleback lineage. Evolution
62:700–710.

Janzen, F. J., and H. S. Stern. 1998. Logistic regression for empirical studies
of multivariate selection. Evolution 52:1564–1571.

Keightley, P. D., and W. G. Hill. 1988. Quantitative genetic variability main-
tained by mutation-stabilizing selection balance in finite populations.
Genet. Res. 52:33–43.

Kingsolver, J. G., and D. W. Pfennig. 2007. Patterns and power of phenotypic
selection in nature. Bioscience 57:561–572.

Kingsolver, J. G., and S. E. Diamond. 2011. Phenotypic selection in natural
populations: what limits directional selection? Am. Nat. 177:346–357.

Kingsolver, J. G., H. E. Hoekstra, J. M. Hoekstra, D. Berrigan, S. N. Vignieri,
C. E. Hill, A. Hoang, P. Gibert, and P. Beerli. 2001. The strength of
phenotypic selection in natural populations. Am. Nat. 157:245–261.

Kingsolver, J. G., S. E. Diamond, A. M. Siepielski, and S. M. Carlson.
2012. Synthetic analyses of phenotypic selection in natural populations:
lessons, limitations and future directions. Evol. Ecol. 26:1101–1118.

Kirkpatrick, M. 2010. Rates of adaptation: why is Darwin’s machine so slow?
Pp. 177–195 in M. A. Bell, D. J. Futuyma, W. F. Eanes, and J. S. Levinton,
eds. Evolution since Darwin: the first 150 years. Sinauer Associates, Inc.,
Sunderland, MA.

Knapczyk, F. N., and J. K. Conner. 2007. Estimates of the average strength of
natural selection are not inflated by sampling error or publication bias.
Am. Nat. 170:501–508.

Kopp, M., and J. Hermisson. 2006. The evolution of genetic architecture under
frequency-dependent disruptive selection. Evolution 60:1537–1550.

———. 2007. Adaptation of a quantitative trait to a moving optimum. Genet-
ics 176:715–719.

Lande, R. 1976. Natural selection and random genetic drift in phenotypic
evolution. Evolution 30:314–334.

———. 1980. Genetic variation and phenotypic evolution during allopatric
speciation. Am. Nat. 116:463–479.

Lande, R., and S. J. Arnold. 1983. The measurement of selection on correlated
characters. Evolution 37:1210–1226.

Latter, B. 1960. Natural selection for an intermediate optimum. Aust. J. Biol.
Sci. 13:30–35.

Levine, T. R., and C. R. Hullett. 2002. Eta squared, partial eta squared, and
misreporting of effect size in communication research. Hum. Comm.
Res. 28:612–625.

Lewontin, R. 1974. The genetic basis of evolutionary change. Columbia Univ.
Press, New York.

Lynch, M. 1990. The rate of morphological evolution in mammals from the
standpoint of the neutral expectation. Am. Nat. 136:727–741.

Lynch, M., W. Gabriel, and A. M. Wood. 1991. Adaptive and demographic
responses of plankton populations to environmental change. Limnol.
Oceanogr. 36:1301–1312.

Martin, R. A., and D. W. Pfennig. 2012. Widespread disruptive selection in the
wild is associated with intense resource competition. BMC Evol. Biol.
12:136.

Martin, C. H., and P. C. Wainwright. 2013. Multiple fitness peaks on the
adaptive landscape drive adaptive radiation in the wild. Science 339:208–
211.

Matsumura, S., R. Arlinghaus, and U. Dieckmann. 2012. Standardizing selec-
tion strengths to study selection in the wild: a critical comparison and
suggestions for the future. Bioscience 62:1039–1054.

McGuigan, K., L. Rowe, and M. W. Blows. 2011. Pleiotropy, apparent sta-
bilizing selection and uncovering fitness optima. Trends Ecol. Evol.
26:22–29.

Moreno-Rueda, G. 2009. Disruptive selection by predation offsets stabilizing
selection on shell morphology in the land snail Iberus g. gualtieranus.
Evol. Ecol. 23:463–471.

Morrissey, M. B., and J. D. Hadfield. 2012. Directional selection in temporally
replicated studies is remarkably consistent. Evolution 66:435–442.

Phillips, P. C., and S. J. Arnold. 1989. Visualizing multivariate selection.
Evolution 43:1209–1222.

R Development Core Team. 2012. R: A language and environment for statisti-
cal computing. R Foundation for Statistical Computing, Vienna, Austria.

Robertson, A. 1956. The effect of selection against extreme deviants based on
deviation or on homozygosis. J. Genet. 54:236–248.

Rosenzweig, M. L. 1978. Competitive speciation. Biol. J. Linn. Soc. 10:275–
289.

Roughgarden, J. 1972. Evolution of niche width. Am. Nat. 106:683–718.
Rousseeuw, P. J., and C. Croux. 1993. Alternatives to the median absolute

deviation. J. Am. Stat. Assoc. 88:1273–1283.
Rueffler, C., T. J. M. Van Dooren, O. Leimar, and P. A. Abrams. 2006.

Disruptive selection and then what? Trends Ecol. Evol. 21:238–245.
Schluter, D. 1988. Estimating the form of natural selection on a quantitative

trait. Evolution 42:849–861.
———. 1994. Experimental evidence that competition promotes divergence

in adaptive radiation. Science 266:798–801.
Schluter, D., and D. Nychka. 1994. Exploring fitness surfaces. Am. Nat.

143:597–616.

4 9 8 EVOLUTION FEBRUARY 2014



SELECTION AND THE LIMITS OF DETECTION

Schneider, K. A. 2006. A multilocus-multiallele analysis of frequency-
dependent selection induced by intraspecific competition. J. Math. Biol.
52:483–523.

Siepielski, A. M., J. D. DiBattista, and S. M. Carlson. 2009. It’s about time:
the temporal dynamics of phenotypic selection in the wild. Ecol. Lett.
12:1261–1276.

Siepielski, A. M., J. D. DiBattista, J. A. Evans, and S. M. Carlson. 2011.
Differences in the temporal dynamics of phenotypic selection among
fitness components in the wild. Philos. Trans. R. Soc. Lond. B-Biol. Sci.
278:1572–1580.

Simpson, G. G. 1944. Tempo and mode in evolution. Columbia Univ. Press,
New York.

Sinervo, B., and R. Calsbeek. 2006. The developmental, physiological, neural,
and genetical causes and consequences of frequency-dependent selection
in the wild. Annu. Rev. Ecol. Evol. Syst. 37:581–610.

Slatkin, M. 1979. Frequency- and density-dependent selection on a quantita-
tive character. Genetics 93:755–771.

Spichtig, M., and T. J. Kawecki. 2004. The maintenance (or not) of polygenic
variation by soft selection in heterogeneous environments. Am. Nat.
164:70–84.

Stanley, S. M. 1979. Macroevolution: pattern and process. W. H. Freeman,
San Francisco, CA.

Stebbins, G. L., and F. J. Ayala. 1981. Is a new evolutionary synthesis neces-
sary? Science 213:967–971.

Stinchcombe, J. R., A. F. Agrawal, P. A. Hohenlohe, S. J. Arnold, and
M. W. Blows. 2008. Estimating nonlinear selection gradients using
quadratic regression coefficients: double or nothing? Evolution 62:
2435–2440.

Thibert-Plante, X., and A. P. Hendry. 2011. The consequences of phenotypic
plasticity for ecological speciation. J. Evol. Biol. 24:326–342.

Travis, J. 1989. The role of optimizing selection in natural populations. Annu.
Rev. Ecol. Syst. 20:279–296.

Uyeda, J. C., T. F. Hansen, S. J. Arnold, and J. Pienaar. 2011. The million-
year wait for macroevolutionary bursts. Proc. Natl. Acad. Sci. U.S.A.
108:15908–15913.

Wake, D. B., G. Roth, and M. H. Wake. 1983. On the problem of stasis in
organismal evolution. J. Theor. Biol. 101:211–224.

Willensdorfer, M., and R. Bürger. 2003. The two-locus model of Gaussian
stabilizing selection. Theor. Popul. Biol. 64:101–117.

Williams, G. C. 1992. Natural selection: domains, levels, and challenges.
Oxford Univ. Press, New York.

Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding and selec-
tion in evolution. Pp. 356–366 in Proceedings of the Sixth International
Congress of Genetics, Ithaca, NY.

———. 1935. The analysis of variance and the correlations between relatives
with respect to deviations from an optimum. J. Genet. 30:243–256.

Yeaman, S., and F. Guillaume. 2009. Predicting adaptation under migration
load: the role of genetic skew. Evolution 63:2926–2938.

Zeh, D. W., J. A. Zeh, and Y. Ishida. 2009. Transposable elements and an
epigenetic basis for punctuated equilibria. BioEssays 31:715–726.

Zurell, D., U. Berger, J. S. Cabral, F. Jeltsch, C. N. Meynard, T. Munkemuller,
N. Nehrbass, J. Pagel, B. Reineking, B. Schroder, et al. 2010. The virtual
ecologist approach: simulating data and observers. Oikos 119:622–635.

Associate Editor: M. Johnston

Supporting Information
Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Supplemental S1: Model description.
Supplemental S2: Additional results.
Table S1.1. Mutational variances for the genetic architectures and parameter values used.
Table S2.1. Results from ANOVA (main effects only), testing for effects of parameters on the rate of detection of linear selection, P(β∗), without
competition.
Table S2.2. Results from ANOVA (including two-way interactions), testing for effects of parameters on the rate of detection of linear selection, P(β∗),
without competition.
Table S2.3. Results from ANOVA (main effects only), testing for effects of parameters on the rate of detection of linear selection, P(β∗), with competition.
Table S2.4. Results from ANOVA (including two-way interactions), testing for effects of parameters on the rate of detection of linear selection, P(β∗),
with competition.
Table S2.5. Results from ANOVA (main effects only), testing for effects of parameters on the rate of detection of quadratic selection, P(γ ∗), without
competition.
Table S2.6. Results from ANOVA (including two-way interactions), testing for effects of parameters on the rate of detection of quadratic selection, P(γ ∗),
without competition.
Table S2.7. Results from ANOVA (main effects only), testing for effects of parameters on the rate of detection of quadratic selection, P(γ ∗), with
competition.
Table S2.8. Results from ANOVA (including two-way interactions), testing for effects of parameters on the rate of detection of quadratic selection, P(γ ∗),
with competition.
Table S2.9. Effects of the width of the fitness function, ω2

s , and the presence or absence of competition, C, on the estimated standardized strength of
stabilizing selection, ω2

s (first quartile Q1, median, and third quartile Q3).

EVOLUTION FEBRUARY 2014 4 9 9



B. C. HALLER AND A. P. HENDRY

Movie S1.1: A few generations from a typical realization of the model without competition.
Movie S1.2: A few generations from a typical realization of the model with competition.
Figure S1.1. Model snapshots of typical phenotypic distributions (bars) and fitness functions (curves).
Figure S2.1. The effect of mutational variance, VM, on the rate of detection.
Figure S2.2. Origins and effects of heritability.
Figure S2.3. Effects of the selective death rate (rate of selective death per generation) on the rate of detection.
Figure S2.4. Effects of environmental variance, VE, on the distribution of estimates of β and γ .
Figure S2.5. Effects of the fitness function width, ω, on the distribution of estimates of β and γ .
Figure S2.6. Effects of competition width, σ c, on the distribution of estimates of β and γ .
Figure S2.7. Effects of mortality rate, m, on the distribution of estimates of β and γ .
Figure S2.8. Effects of the trait (genetic or phenotypic) examined, T, on the distribution of estimates of β and γ .
Figure S2.9. Effects of sample size, Ns, on the distribution of estimates of β and γ .
Figure S2.10. Effects of genetic architecture, G, on the distribution of estimates of β and γ .
Figure S2.11. Effects of mutational effect size, α, on the distribution of estimates of β and γ .
Figure S2.12. Effects of mutation rate, μ, on the distribution of estimates of β and γ .
Figure S2.13. Selection over time, for a realization without competition: (a) linear selection and (b) quadratic selection.
Figure S2.14. Selection over time, for a realization with competition: (a) linear selection and (b) quadratic selection.
Figure S2.15. Autocorrelation of the significance of selection gradient estimates, β∗ and γ ∗, for the pair of runs.
Figure S2.16. Autocorrelation in the estimated values of β and γ , for the pair of runs.
Figure S2.17. A comparison of results from linear regression (x-axes) and logistic regression (y-axes).
Figure S2.18. The intrinsic rate of evolution h0 (as a mean of the median intrinsic rates of sets of realizations) as a function of sample size, Ns.
Figure S2.19. Strength and temporal variation of selection.
Figure S2.20. Temporal variation in selection.
Figure S2.21. Large sample size, Ns = 2500, compared to smaller sample sizes.
Figure S2.22. Effects of sample size, Ns, on the distributions of estimates of β and γ , for supplemental realizations with large population size (Nj = 2500).
Figure S2.23. Effects of small population size, Nj = 500, showing the rate of detection of linear selection, P(β∗), given various parameter values.
Figure S2.24. Effects of small population size, Nj = 500, showing the rate of detection of quadratic selection, P(γ ∗), given various parameter values.
Figure S2.25. Estimates of the shape of the fitness function, derived from selection gradient estimates from realizations without competition.

5 0 0 EVOLUTION FEBRUARY 2014


