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Humans have dramatic, diverse and far-reaching influences on the evolution

of other organisms. Numerous examples of this human-induced contempor-

ary evolution have been reported in a number of ‘contexts’, including

hunting, harvesting, fishing, agriculture, medicine, climate change, pollution,

eutrophication, urbanization, habitat fragmentation, biological invasions and

emerging/disappearing diseases. Although numerous papers, journal special

issues and books have addressed each of these contexts individually, the time

has come to consider them together and thereby seek important similarities

and differences. The goal of this special issue, and this introductory paper,

is to promote and expand this nascent integration. We first develop predictions

as to which human contexts might cause the strongest and most consistent

directional selection, the greatest changes in evolutionary potential, the great-

est genetic (as opposed to plastic) changes and the greatest effects on

evolutionary diversification. We then develop predictions as to the contexts

where human-induced evolutionary changes might have the strongest effects

on the population dynamics of the focal evolving species, the structure of their

communities, the functions of their ecosystems and the benefits and costs for

human societies. These qualitative predictions are intended as a rallying

point for broader and more detailed future discussions of how human influ-

ences shape evolution, and how that evolution then influences species traits,

biodiversity, ecosystems and humans.

This article is part of the themed issue ‘Human influences on evolution,

and the ecological and societal consequences’.
1. Introduction
Humans might be the ‘world’s greatest evolutionary force’ [1,2], frequently

driving what is now called ‘rapid evolution’, ‘contemporary evolution’ or ‘evol-

ution on ecological time scales’. Indeed, even the earliest putative examples of

contemporary evolution often had clear anthropogenic drivers, including pol-

lution [3–6], commercial fishing [7], species introductions/invasions [8–10],

antibiotic treatments [11,12], weed control in agriculture [13,14], zoonotic and

enzootic parasites [15] and others. These early examples helped spread awareness

of contemporary evolution [16,17] to the point that we have since had an

ever-accelerating accumulation of additional and diverse examples. Now that

contemporary evolution is known to be all around us—and, indeed, driven by

us—recent research and discussion has increasingly emphasized the potential

eco-evolutionary consequences for population dynamics, community structure,

ecosystem function and human societies [18–22]. This special issue seeks

to understand this diversity of human-to-evolution-to-ecology-to-human

influences, through both reviews and novel empirical studies.

The present special issue is organized around different ‘contexts’ for human

influences, specifically pollution, eutrophication, urbanization, habitat fragmenta-

tion, climate change, domestication/agriculture, hunting/harvesting (including

fishing), invasion/extinction, medicine and emerging/disappearing diseases
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Table 1. A summary of the reviews and empirical studies in this special issue.

human-induced context reference

type of

manuscript key insight(s)

pollution [23] review/empirical strong selection imposed by human-released chemical pollution can be mitigated by

physiological adaptations such as enzymatic metabolic adaptations that could be costly in

non-polluted conditions

eutrophication [24] review/empirical eutrophication often leads to homogenization of both phenotype and genotype and to a loss

of ecological specialization, which can have cascading effects at the community and

ecosystem levels

urbanization [25] review the type of urban disturbance can have different effects on adaptive traits of organisms in

urban environments, which can affect ecosystem processes and thus eco-evolutionary

dynamics

urbanization [26] empirical consideration of both changes in community responses and evolutionary responses is important

in understanding community trait changes resulting from urbanization, and trait change

depends on the spatial scale at which urbanization is considered

habitat fragmentation [27] review anthropogenic fragmentation generates selection at multiple scales; dispersal and associated

traits are likely to adapt and evolve interactively; and these adaptations might not be

enough for ‘rescue’ at the meta-population level

habitat fragmentation (and

urbanization)

[28] empirical fragmentation predicted trait variation better than did urbanization, and reproductive and

dispersal traits were altered as a result of adaptation to urban environments

climate change [29] review/empirical the role of life-history plasticity and evolution in response to shifts in competition could help

us to understand how climate change induced competition might affect local communities

and biodiversity

domestication/agriculture [30] review agriculture and domestication can drive evolution in wild species that can have large socio-

economic ramifications on ecosystem services. An understanding of these processes can help

inform how to mitigate the impacts

domestication/agriculture [31] empirical a comprehensive, phylogenetically controlled meta-analysis found that domestication influences the

evolution of herbivore resistance, though the magnitude is highly variable. Furthermore, the

evolution of plant defence traits was highly variable in direction and magnitude

hunting/harvesting [32] review contrasting aquatic and terrestrial harvesting, the evolution of system-specific traits can

negatively affect populations, but these effects can be mitigated through reduction of

harvest intensity

hunting/harvesting [33] empirical single versus multi-locus controlled traits can respond differently when subject to harvesting-

induced selective pressures, and a lack of phenotypic adaptation does not mean evolution has

not occurred

invasions/extinctions [34] review invasive and endangered species experience comparable eco-evolutionary challenges, but

important differences exist, which could help explain the differential responses of invasive

( persistence) and endangered (extinction) species

invasions/extinctions [35] empirical adaptation and evolution to novel environments can affect the establishment and persistence

of invasive species

medicine [36] review the evolution and subsequent increase of antibiotic resistance often ignores bacterial

interactions, which can have large implications in eco-evolutionary feedbacks concerning

bacterial communities and with whom they interact

medicine [37] empirical low-levels of antibiotics can affect the ecological and evolutionary outcomes of microbial

communities (e.g. bacteria – phage interactions) through unexpected interactions

emerging/disappearing

diseases

[38] review through a variety of mechanisms, humans can alter the interactions and evolutionary

trajectories of hosts and parasites, with widespread implications for disease emergence and

disappearance

emerging/disappearing

diseases

[39] empirical bat populations with extended exposure to white-nose syndrome are evolving resistance, and

not tolerance, to the fungal pathogen; fitted models demonstrate growth rate of the

pathogen decreases as fungal loads increase
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(table 1). In this introductory paper, we seek to facilitate inte-

gration across these contexts by suggesting generalities and

exceptions for how they shape evolutionary dynamics and

how they thereby have downstream ecological and societal con-

sequences. From the standpoint of evolutionary changes, in §2

we ask: In which contexts will . . .

(a) . . . directional selection be the strongest and most

consistent?

(b) . . . evolutionary potential be the most dramatically

altered?

(c) . . . genetic, as opposed to plastic, responses be most

likely?

(d) . . . evolutionary diversification be most altered?

Then, from the standpoint of ecological and societal con-

sequences, in §3 we ask: In which contexts will human-

induced evolution most alter . . .

(a) . . . population dynamics?

(b) . . . community structure?

(c) . . . ecosystem function?

(d) . . . human societies?

Two conceptual frameworks help to guide this

integration: the phenotypic adaptive landscape and eco-

evolutionary dynamics. The phenotypic adaptive landscape

is a multidimensional surface relating mean population

fitness to mean phenotypes [40–42]. These surfaces are

expected to have peaks that correspond to high-fitness

phenotypes and valleys that correspond to low-fitness

phenotypes (figure 1). Selection thus favours populations

phenotypically ‘climbing’ the slopes towards the fitness

peaks. Human activities can alter these dynamics by chan-

ging the number, position, elevation and gradient of the

peaks (figure 1; [43]), and also by changing the distribution

of phenotypes across the surface (e.g. through gene flow,

hybridization, mutation and plasticity). Eco-evolutionary

dynamics then asks how these changes in phenotype/

fitness influence the dynamics of the evolving population

(e.g. population size, population growth, age structure),

the structure of the community in which it is embedded

(e.g. numbers and diversity of species, food web structure),

and various ‘functions’ of the overall ecosystem (e.g. primary

productivity, decomposition, nutrient cycling). Any of these

eco-evolutionary effects could then impact human societies

and feed back to further influence evolutionary change

(figure 2).

When considering human effects on evolution and the

potential consequences, it is sometimes useful to draw a dis-

tinction between how humans interact with their ‘enemies’

(or ‘adversaries’) versus their ‘friends’. In the case of ene-

mies—such as weeds, pests and pathogens—we typically

want to decrease their abundance and impact [30,36,38],

which we attempt through various control measures, such

as weeding, herbicides, pesticides, antibiotics or culling.

Not surprisingly, the resulting selection favours resistance/

tolerance to our control efforts, which can reduce their

efficacy [30,36,38]. Of course, these direct interactions bet-

ween humans and their enemies can spillover to influence

non-target species [44], which can have a variety of cascad-

ing consequences. In the case of friends—most obviously

crops and natural resources, but also biodiversity in
general—we typically want to increase properties such

as abundance, productivity and stability [30,45]. Here we

hope for—and sometimes facilitate—adaptive evolution

that benefits the target species, such as by enhancing adap-

tive potential in endangered species [46–48], as well as

any ecosystem services key species might provide. Of

course, the categories ‘friend’ and ‘enemy’ are not always

mutually exclusive, such as when ‘frenemies’ have both

benefits and costs depending on the time or context. One

example would be pathogenic bacteria evolving to influence

other pathogens [49]. Finally, we could have organismal

‘neighbours’ that we frequently see and encounter; and,

although they could be enemies or friends, are perhaps

more often ‘just there’.

In the sections that follow, we suggest some answers to

the above questions—in each case starting with a paragraph

on general predictions and following with a paragraph over-

laying those predictions onto the above human contexts. It

was not possible to be comprehensive or definitive, partly

owing to space constraints and partly owing to incomplete

information. Instead, we seek to suggest some particularly

strong associations while making an implicit ‘all else being

equal’ assumption. Although we sometimes note interesting

exceptions, it is important to acknowledge that many other

points and examples and exceptions can be advanced. Thus,

we intend these sections as a ‘draft’ of ideas that we hope

will ferment further work and discussion.
2. Human influences on evolution (figure 3)
(a) In which contexts will directional selection be the

strongest and most consistent?
Directional selection favouring evolutionary change is

expected to be the strongest and most consistent when popu-

lation phenotypes rest persistently on the slopes of steep

adaptive peaks (figure 1). This state can arise when the

elevations and gradients of peaks are the greatest, and when

their displacement from current phenotypes is the farthest, fast-

est and most sustained. One confluence of these conditions

occurs when selection consistently favours the most extreme

trait values (e.g. the largest body sizes) independent of the

specific distribution of trait values. Another confluence

occurs in antagonistic coevolution, where the evolution of

one species (e.g. a parasite) to better exploit another species

(e.g. a host) leads to the evolution of countermeasures and,

hence, the continual evolution of both species [50–54]. These

coevolutionary arms races come in two general forms [54]:

escalating arms races [55] and cyclical Red Queen dynamics

[56]. Both forms of antagonistic coevolution can impose

strong directional selection, but escalating arms races might

more often lead to consistent directional change.

Strong and consistent directional selection might arise in

any of the human-disturbance contexts, but we specifically

wish to highlight hunting/harvesting, climate change

and certain agricultural and human health situations. For

hunting/harvesting, selection can actively target and

disproportionately remove the largest individuals each gener-

ation, regardless of average body size [32]. Strong directional

selection for smaller size thus should persist even as evolution

proceeds. Matching this expectation, phenotypic changes in

wild populations are greatest when humans act as predators

http://rstb.royalsocietypublishing.org/


Humans

humans add a new peak that
reduces the distinctiveness

of old peaks – diversity
decreases

humans add a new peak that
does not reduce the

distinctiveness of old peaks –
diversity increases

humans flatten and lower
adaptive peaks – diversity

decreases

humans raise and steepen
adaptive peaks – divergence

increases

original adaptive landscape

Figure 1. Hypothetical adaptive landscapes showing mean population fitness (contours) with respect to mean phenotype for two traits (x and y axes). Grey circles
show potential distributions of phenotype. The starting (original) adaptive landscape is in the central thick box and has two fitness peaks that are each occupied by
its own reasonably well-adapted population. The left-hand panels depict two forms of a potential human-caused increase in the number of peaks. The right-hand
panels depict two forms of human-caused changes in the heights of peaks and the gradients around peaks. This figure is modified from [43].
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Figure 2. Graphical representation of how eco-evolutionary dynamics interact with human influences. Human activities (at right) can have direct ecological effects
on the dynamics of a focal species (populations), the structure of its community (communities) and the function of its ecosystem (ecosystems). These direct eco-
logical effects can influence the traits (phenotypes) and genetic properties (genomes) of species, thus leading to indirect evolutionary effects of human activities.
Human activities can also directly influence the phenotypes and genomes of species that can then influence population dynamics, community structure, and eco-
system function. Changes in any of these evolutionary or ecological parameters can then feedback to have important consequences for human activities, and human
societies.
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Figure 3. A schematic outlining some expectations for which human-disturbance contexts might most strongly influence evolutionary dynamics. These suggestions
are not meant to be definitive but rather a starting point, or a template, for discussion and further work. For this reason, a number of context-by-question cells do
not have predictions—and are therefore empty. Stated another way, we have here only highlighted a number of potential expectations—many others are possible.
And, of course, exceptions are certain to occur in every instance.
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[2,57] and when fishing intensity is strongest [58]. For climate

change, one might similarly assume that, because warming is

ongoing, optimal trait values should continue to shift in the

same direction, with a clear example being the advancement

of spring phenology [29,59]. However, year-to-year climate vari-

ation can exceed the overall warming trend, and so selection

should be variable from year to year [60]. Of course, directional

selection will not be eternal in either context, because harvesting

often ceases when fish get too small or rare, and because phenol-

ogy cannot advance indefinitely. Hence, we instead expect the

strongest and most consistent directional selection to arise

when humans instigate or intensify escalating arms races,

such as when we kill or control our enemies (weeds, pests,

pathogens), which then evolve resistance, which thus necessi-

tates newer or stronger control measures—and so on

[30,36,38]. Even here, directional selection might stop—or at

least weaken—if, for example, enemies evolve tolerance instead

of resistance [39,54,61], if they evolve to become friends or neigh-

bours (e.g. domestication of wild animals or plants [62,63]), or if

we wipe them out.
0028
(b) In which contexts will evolutionary potential be the
most dramatically altered?

Evolutionary potential is determined by the distribution of

genetic (co)variance across the adaptive landscape, with

greater variance and better alignment with the direction of

selection both expected to speed evolution [64]. Any pertur-

bation that alters genetic (co)variance can thus influence

evolutionary dynamics on a given adaptive landscape. In

some cases, genetic variation can increase, including through

greater gene flow, hybridization or mutation. Such increases

can be beneficial if enough of the new variation is adaptive

versus detrimental if too much of it is maladaptive. In other

cases, genetic variation can decrease, most obviously through

strong selection or reduced population size (which might or

might not be coupled: [65–67]), with the latter increasing gen-

etic drift and inbreeding. Such decreases could be beneficial

(e.g. if they reflect precise adaptation) or detrimental (e.g. if

they limit future responses to selection).

We suggest that the greatest increases in genetic variation

will attend contexts where population sizes increase most

dramatically, such as for introduced species experiencing

‘enemy release’ [35,68] and for native species benefiting from

‘disappearing diseases’ [38]. Increases are also expected when

diverse source populations are brought together in new

locations [34,69,70] and in the case of exposure to mutagens

(e.g. pollution [71,72]). We suggest that the greatest decreases
in genetic variation will attend contexts where selection is

strong and consistent, and/or when population sizes decrease

dramatically. Some contexts that generate strong selection

were discussed in §2a, especially hunting/harvesting and

some coevolutionary arms races. However, even exceptio-

nally strong selection does not always deplete relevant genetic

variation [73,74], especially when the selection is variable in

time and space. Some contexts that can greatly reduce popu-

lation size include habitat loss (e.g. urbanization [27]), strong

abiotic stressors (e.g. pollution [23,24]) and strong biotic stres-

sors (e.g. invasive predators/parasites [34] and emerging

diseases [38]). Additionally, genetic variation within popu-

lations can decrease owing to fragmentation that reduces gene

flow [72].
(c) In which contexts will genetic (as opposed to
plastic) responses be most likely?

When environments change, organisms can respond adaptively

by moving to new locations, by altering their phenotypes as indi-

viduals (plasticity), or by evolving as populations (genetic

change). Focusing on the latter two possibilities, many instances

are known where populations have persisted through dramatic

environmental shifts, and where adaptive phenotypic change

appears to have played a key role [28,31,75]. In these cases,

a fundamental question is whether the phenotypic changes

were plastic or genetic, which is often hard to conclusively

establish—especially in the contexts of climate change

[76–78] and hunting/harvesting [33]. In general, genetic

change is expected to be more important when populations

are larger (because standing genetic variation and mutational

inputs are greater), when generation times are shorter (because

even small per generation changes can achieve larger per year

changes), when the altered environmental conditions are novel

(because existing adaptive plasticity would be less likely) and

when the environmental change is greater (because the scope

for plasticity is limited).

These considerations suggest that genetic responses should

be greatest in the contexts of human health and agriculture,

although evolution certainly also has been documented in the

other contexts. The reason we emphasze health and

agriculture is that humans are there trying to control their ene-

mies (e.g. weeds, pests, pathogens), which tend to be abundant

and have relatively short generation times. Moreover, control

measures are often novel and selection is often continual. The

evolution of such enemies is correspondingly very common,

rapid and dramatic [79–84]. Another context where genetic

changes might be especially important is pollution—because

the selection pressures often involve novel chemicals for

which existing adaptive plasticity is unlikely [3,23]. Regardless

of the context, the relative contributions of plasticity and genetic

change should vary through time. Plasticity could allow rapid

immediate responses and therefore should be especially impor-

tant at the outset of a disturbance, as suggested in the ‘Baldwin

Effect’ (reviewed in [85]). However, plasticity is limited and can

be costly, thus favouring subsequent genetic changes, including

the evolution of plasticity [86,87].

(d) In which contexts will evolutionary diversification
be most altered?

Biodiversity evolves through adaptation to (i) different environ-

ments (i.e. different peaks on an adaptive landscape) and

(ii) similar environments in different locations (i.e. the same

peak on different adaptive landscapes) [41]. Thus, human

influences that change the number, type and distinctiveness

of environments and locations will effectively change the

number, position and shape of adaptive peaks, which will

thereby influence the evolution of biodiversity (figure 1) [88].

These effects could arise in three basic ways. First, humans

can change how populations in different locations experience

divergent selection by, for example, translocating species into

new locations [89] or altering habitats in some locations

[90–92]. Second, humans can modify the number and distinc-

tiveness of alternative environments in a given location,

thereby altering disruptive selection [93]. Third, humans can

modify the evolutionary independence of populations and

species by altering hybridization, gene flow and introgression
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[94]. In each case, the effects can be ‘positive’ by facilitating

the evolution of increased biodiversity (reviewed in [95]) or

‘negative’ by causing the evolution of decreased biodiversity [94].

Each of the contexts for human influence could have the

above ramifications; yet they seem particularly to converge

for species introductions that lead to biological invasions.

Specifically, introduced species often experience novel selec-

tive pressures, especially new biotic interactions, and have

considerable evolutionary independence from source popu-

lations in the native range. In addition, introduced species

can provide new ‘environments’ for adaptation by native

species, with an exemplar being new insect host races—and

their associated species—on introduced plants [10,96,97].

Alternatively, or additionally, species introductions can cause

the evolution of decreased biodiversity by altering the distinc-

tiveness of natural environments, with an exemplar being

new food types for birds that diminish the distinctiveness of

native food types [93]. Introductions can also increase or

decrease biodiversity by altering patterns of gene flow, hybrid-

ization and gene flow within and among species [94,98].

Other contexts that merit special mention are fragmentation,

which imposes strong selection and increases evolutionary

independence [27,91], and urbanization and pollution, which

create especially novel environments [3,23,25,99].
3. Ecological and societal consequences (figure 4)
(a) In which contexts will human-induced evolution

most alter population dynamics?
Humans have direct effects on species that alter aspects of

their population structure ranging from age distributions to

overall abundance. Beyond these direct demographic effects,

humans can indirectly modify species’ population dynamics

by influencing their evolution. For instance, environmental

change should render many populations maladapted, leading

to decreased individual fitness, which should decrease popu-

lation size—potentially causing extirpation or extinction. Yet

this maladaptation should also generate selection, which

should promote adaptation that increases individual fitness,

which should increase population size—potentially allowing

‘evolutionary rescue’ (reviewed in [20,100,101]). However,

these potential evolutionary benefits are not inevitable, nor

are they necessarily sufficient for recovery. First, evolutionary

rescue depends on sufficient adaptive genetic variation,

which might or might not be present (see §2a). Second, strong

selection can impose a mortality cost (i.e. ‘hard’ selection) that

dramatically reduces population size, which can decrease

genetic variation and increase inbreeding, drift and stochastic

extinction [19,20,102,103]. As an additional effect, human activi-

ties can lead to the evolution of increased (or decreased) carrying

capacity in particular species, such as through adaptation to

new environments or resources.

Evolution occurring in any of the contexts for human

influence could alter species’ population dynamics, with several

effects being especially clear. First, the negative effects of

pollution (e.g. toxic chemicals) should often impose hard selec-

tion that can influence population size [104]. Second, attempts to

reduce or eliminate enemies in agriculture and medicine are

specifically designed to decrease the target’s absolute fitness

and should therefore also impose hard selection. With respect

to the evolution of carrying capacity, several other human
activities seem likely to be particularly potent. For instance,

humans often generate novel environments (e.g. urbanization

[27] and agriculture [30]) and novel species interactions

(e.g. invasions/extinctions [34] and emerging/disappearing

diseases [38]) that can provide opportunities for evolutionary

niche expansion. Putative examples might be mosquitoes

adapting to the London Underground [105] and—again—

new insect host races on introduced plants [10,96,97]. In all of

these scenarios—and others—the evolution caused by human

activities can substantially alter the abundance, age structure

and population growth rate.
(b) In which contexts will human-induced evolution
most alter community structure?

As was the case for population dynamics (§3a), humans often

have direct demographic influences on community structure,

whereas we are here interested in the evolutionary effects. We

distinguish two main scenarios. First, human activities can

have broad effects that simultaneously influence the evolution

of manyspecies, thus providing multiple points of entry for influ-

ence on a given community. Second, human activities can have

strong effects on the evolution of particular ‘important’ species,

which can then have cascading effects on the broadercommunity

[37]. These cascading effects could be a direct result of trait

change in the important species; that is, trait-mediated effects

of an evolving species on the community in which it is

embedded. Alternatively or additionally, the evolution of an

important species could alter its population dynamics, which

could thereby influence the rest of the community.

Simultaneous multispecies evolutionary effects (scenario 1)

seem possible in many contexts, but especially so for wholesale

alterations of the environment. One such context is climate

change, which is reshaping the phenology (and other traits) of

large sets of interacting species [59], which thereby alters relative

species abundances and the structure of food webs [106].

Wholesale environmental alterations are also typical in urbaniz-

ation, fragmentation, pollution and agriculture [106,107].

Cascading effects of an important species (scenario 2) seem

most likely when humans influence the evolution of particular

‘keystone’ species, ‘foundation’ species, ‘niche constructing’

species, ‘ecosystem engineers’, ‘strong interactors’ and so on.

These important species could be those having very large effects

as individuals (e.g. beavers, elephants and sea otters) or large

effects owing to their high abundance (e.g. weeds, pests, patho-

gens and migratory species). We suggest that the community

consequences of evolution in important species such as these

are particularly likely for hunting/harvesting and human

health, where humans often directly target specific large-effect

friends or enemies. The same should be true when climate

change or the bioaccumulation of toxins influences the

evolution of apex predators [108,109].
(c) In which contexts will human-induced evolution
most alter ecosystem function?

Human influences on evolution (§§2a–d) that then have conse-

quences for the dynamics of populations and species (§3a) and

the structure of communities (§3b) might thereby alter various

aspects of ecosystem function, such as primary productivity,

nutrient cycling, decomposition rates and carbon sequestration

[19,110]. In parallel to our above suggestions for community
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structure, these effects could arise through wholesale environ-

mental manipulations that influence the evolution of many

species, or through effects on the evolution of specific impor-

tant species, which could then have trait- or density-

mediated effects on ecosystems. Additionally, the evolutionary

effects on community structure considered in the previous

question could cascade to have ecosystem consequences

(figure 2). Finally, any evolutionary influences on a particular

ecosystem function could have cascading influences on other

ecosystem functions, including through feedbacks that influ-

ence community structure, population dynamics and trait

evolution [19] (figure 2).

The most important contexts for human-caused evolution-

ary effects on ecosystem function might be similar to those

described above for community structure. First, wholesale

environmental change that causes the evolution of many species

that together have important ecosystem effects seems particu-

larly likely for climate change, urbanization, pollution and

agriculture. Second, cascading effects of the evolution of impor-

tant species seem particularly likely for hunting/harvesting,

agriculture and human health. Although evolutionary effects

on ecosystem function could be strong (e.g. for plant size affect-

ing nutrient and carbon cycling [111]), theory and empirical

assessments have suggested that such effects might be weaker

at the ecosystem level than at the community level [19,110].

The hypothesized reason is that additional external variables

are expected to strongly influence ecosystem processes, and

thereby swamp, or at least obscure, the effects of contemporary

evolution. As examples, potential ecosystem effects of evolution

might be swamped for climate change by the direct abiotic

effects of varying temperature and precipitation, for agriculture

by the direct effects of fertilizer and irrigation and for eutrophi-

cation by the direct effects of nutrients. Thus, we might expect

the effects of evolution on ecosystems to be strongest, or at

least the most obvious, in contexts where external drivers are

not changing dramatically at the same time. Two such contexts

might be introduced/invasive species and hunting/harvesting,

where changes in biotic conditions could be more important

than changes in abiotic factors. Of course, it is also possible for

altered biotic interactions to swamp or obscure underlying

eco-evolutionary dynamics.
(d) In which contexts will human-induced evolution
most alter human societies?

We have thus far addressed how human influences on evol-

ution can alter ecological processes at the population,

community and ecosystem levels. It is now time to evaluate

when these effects might have the greatest consequences for

humans themselves, with respect either to services (from our

friends) or disservices (from our enemies). First, some organis-

mal traits are of specific interest to humans, such as the size of

hunted/harvested animals, the concentration of useful plant

chemicals, the nutrient content of agricultural products or the

resistance of weeds/pests/pathogens to control measures.

Second, humans can derive costs or benefits from evolutionary

effects on the population dynamics of focal organisms, such as

the biomass of harvested or cultivated species, the abundance

of weeds/pests/pathogens, and the density and spread of

undesirable invasive species. Third, evolutionary effects on

communities can interact with our desire to preserve biodiver-

sity [112,113]. Fourth, evolutionary changes can influence
emergent ecosystem properties that humans care about, such

as carbon sequestration, water clarity or air quality.

The consequences of human-induced evolution for human

societies are most obvious when the evolving organisms pro-

vide direct benefits as friends (e.g. hunting/harvesting and

domestication) or direct costs as enemies (e.g. weeds/pests/

pathogens, invasive species and emerging diseases). A less

direct conduit for societal impacts occurs when humans influ-

ence the evolution of our ‘neighbours’, which can thereby

influence our appreciation of nature or provide a mechanism

for emerging enemies or friends. Importantly, all of the contexts

for human-induced evolution have the potential to feedback to

influence human societies through—for example—biodiversity,

nutrient cycling and productivity. Stated plainly, all ecosystem

services and disservices are shaped by past and future evol-

ution, making them—more properly—EVOsystem services

and disservices [113,114]. We further suggest that societal

impacts will be strongly shaped by the nature and strength of

feedbacks (figure 2), such as when humans cause the evolution

of organisms in ways that have societal impacts, which then

induces humans to further modify the evolution of those organ-

isms. Those feedbacks could be positive (reinforcing), which

will tend to destabilize eco-evolutionary systems, or negative

(opposing), which will tend to stabilize eco-evolutionary

systems [19,115]. An especially clear example of positive feed-

back is the race between organisms detrimental to humans

and our attempts to control them.
4. Knowledge gaps and future directions
We have made a number of assertions as to the contexts where

human-induced evolution is most likely to modify particular

evolutionary processes (figure 3) and, thereby, alter particular

ecological outcomes (figure 4). These assertions amount to

intuitive predictions that now require formal empirical assess-

ment. These assessments could be implemented through

meta-analyses of intensities of selection and rates of pheno-

typic change in different contexts for human influence. Some

analyses of this sort have already been attempted: Hendry

et al. [75] compared the rates of phenotypic change for various

types of human influence; Darimont et al. [57] showed that

rates of change were greatest when humans acted as preda-

tors, and Westley [116] did not find consistently faster

evolution in biological invasions. These databases have con-

tinued to grow, and the time seems ripe for formal analyses

of predictions such as those we have here tendered. Of

course, we emphasize that our predictions are merely a start-

ing point intended to promote research and discussion in

this area.

For the most part, we have emphasized links between evol-

utionary and ecological change. However, contemporary

evolution might be even more important in shaping a lack of

change (i.e. stability) in ecological processes [115,117]. As a

result, human-induced evolution, as well as its ecological and

societal consequences, could be often ‘cryptic’ [118]. At present,

reliable methods for inferring these cryptic dynamics in nature

are lacking, despite their likely prevalence and importance

[118]. Increasing attention should be directed toward this diffi-

cult but critical enterprise. We have also tended to emphasize

particular simple chains of causal interactions, such as from a

particular human activity to the evolution of a particular species

to a particular ecological response to a particular societal
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consequence. However, many other interactions likely influ-

ence each particular link in any instance, and we therefore

need to move beyond these ‘focal species’ approaches.

From our increasing knowledge of how humans influence

evolution comes the opportunity, perhaps even the responsi-

bility, for humans to do something about it and, indeed, we

already are in a number of arenas. Assisted gene flow is

used to facilitate genetic rescue of endangered populations

[119,120] and assisted evolution is employed in some conser-

vation efforts [121]. Size limits in fisheries are altered to

reduce size selectivity [122]. Refuges of non-Bt crops are

used to reduce the evolution of resistance by pests to Bt
crops [123,124]. Mosquitoes are engineered to be more resist-

ant to infection by malaria or dengue [125], or are targeted

later in life, because selection is weaker [126]. Multiple-

target drug cocktails are developed to reduce the chance

(or at least speed) of resistance evolution in HIV [1,127], bac-

terial infections [128] and cancer [129]. In short, evolutionary

thinking is already having practical applications in bio-

diversity, human health, agriculture and natural resource

management [2,112,130–132]. The future affords even greater
opportunities to influence evolution in informed, effective,

restrained and safe directions [45,112].
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