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BACKGROUND: As global climate change ac-
celerates, one of the most urgent tasks for the
coming decades is to develop accurate pre-
dictions about biological responses to guide the
effective protection of biodiversity. Predictive
models in biology provide a means for scientists
to project changes to species and ecosystems
in response to disturbances such as climate
change. Most current predictive models, how-
ever, exclude important biological mechanisms
such as demography, dispersal, evolution, and
species interactions. These biological mech-
anisms have been shown to be important in
mediating past and present responses to cli-
mate change. Thus, current modeling efforts
do not provide sufficiently accurate predic-
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tions. Despite the many complexities involved,
biologists are rapidly developing tools that
include the key biological processes needed
to improve predictive accuracy. The biggest
obstacle to applying these more realistic mod-
els is that the data needed to inform them
are almost always missing. We suggest ways
to fill this growing gap between model sophis-
tication and information to predict and prevent
the most damaging aspects of climate change
for life on Earth.

ADVANCES: On the basis of empirical and
theoretical evidence, we identify six biological
mechanisms that commonly shape responses
to climate change yet are too often missing
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Emerging models are beginning to incorporate six key biological mechanisms that can
improve predictions of biological responses to climate change. Models that include biological
mechanisms have been used to project (clockwise from top) the evolution of disease-harboring
mosquitoes, future environments and land use, physiological responses of invasive species such as
cane toads, demographic responses of penguins to future climates, climate-dependent dispersal
behavior in butterflies, and mismatched interactions between butterflies and their host plants. Despite
these modeling advances, we seldom have the detailed data needed to build these models, necessitating
new efforts to collect the relevant data to parameterize more biologically realistic predictive models.
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from current predictive models: physiology;
demography, life history, and phenology; species
interactions; evolutionary potential and popula-
tion differentiation; dispersal, colonization, and
range dynamics; and responses to environmental
variation. We prioritize the types of information
needed to inform each of these mechanisms and
suggest proxies for data that are missing or
difficult to collect. We show that even for well-
studied species, we often lack critical information
that would be necessary to apply more realistic,
mechanistic models. Consequently, data limi-
tations likely override the potential gains in
accuracy of more realistic models. Given the
enormous challenge of
collecting this detailed
Read the full article  information on millions
at http://dx.doi. of species around the
org/10.1126/ world, we highlight prac-
science.aad8466 tical methods that pro-
mote the greatest gains
in predictive accuracy. Trait-based approaches
leverage sparse data to make more general
inferences about unstudied species. Target-
ing species with high climate sensitivity and
disproportionate ecological impact can yield
important insights about future ecosystem
change. Adaptive modeling schemes provide
ameans to target the most important data while
simultaneously improving predictive accuracy.

OUTLOOK: Strategic collections of essential
biological information will allow us to build
generalizable insights that inform our broader
ability to anticipate species’ responses to climate
change and other human-caused disturbances.
By increasing accuracy and making uncertainties
explicit, scientists can deliver improved pro-
jections for biodiversity under climate change
together with characterizations of uncertainty
to support more informed decisions by policy-
makers and land managers. Toward this end,
a globally coordinated effort to fill data gaps
in advance of the growing climate-fueled bio-
diversity crisis offers substantial advantages
in efficiency, coverage, and accuracy. Biologists
can take advantage of the lessons learned
from the Intergovernmental Panel on Climate
Change’s development, coordination, and inte-
gration of climate change projections. Climate
and weather projections were greatly improved
by incorporating important mechanisms and
testing predictions against global weather sta-
tion data. Biology can do the same. We need to
adopt this meteorological approach to predict-
ing biological responses to climate change to
enhance our ability to mitigate future changes
to global biodiversity and the services it pro-
vides to humans.
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New biological models are incorporating the realistic processes underlying biological responses
to climate change and other human-caused disturbances. However, these more realistic
models require detailed information, which is lacking for most species on Earth. Current monitoring
efforts mainly document changes in biodiversity, rather than collecting the mechanistic data
needed to predict future changes. We describe and prioritize the biological information needed to
inform more realistic projections of species’ responses to climate change. We also highlight how
trait-based approaches and adaptive modeling can leverage sparse data to make broader
predictions. We outline a global effort to collect the data necessary to better understand, anticipate,
and reduce the damaging effects of climate change on biodiversity.

e need to predict how climate change will
alter biodiversity if we are to prevent
serious damage to the biosphere (7). Biol-
ogists develop predictive models to antic-
ipate how environmental changes might
affect the future properties of species and eco-
systems (2, 3). Many models have been developed
to understand climate change impacts (fig. S1) (4),
but biological responses remain difficult to predict
(5, 6). One reason is that most models forecasting
biodiversity change ignore underlying mechanisms,
such as demographic shifts, species interactions,
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and evolution, and instead extrapolate correlations
between current species’ ranges and climate (Fig. 1)
(4). These omissions are troubling because we
know that these missing biological mechanisms
played key roles in mediating past and present
Dbiotic responses to climate change (7-9). Moreover,
models ignoring biological mechanisms often
become unreliable when extrapolated to novel
conditions (10-13). As climates and ecological
communities without historical precedent become
more common and correlations between current
species distributions and climate become uncoupled
(10, 14, 15), we cannot rely on tools based on
statistical descriptions of the past. Given the essen-
tial role of biological processes in mediating species’
responses to climate change, accurate forecasts
of future biodiversity likely will require more
realistic models.

Emerging models incorporate fundamental
biological mechanisms rather than relying solely on
statistical correlations (16-19). Unlike correlative
approaches, mechanistic models do not assume
that a species’ range reflects its niche perfectly,
has reached equilibrium with the environment,
or is independent of species interactions—all
commonly violated assumptions (7, 13, 20, 2I).
Mechanistic models can also integrate multiple,
interacting biological processes, as well as non-
linear and stochastic dynamics (Fig. 2) (17, 18, 22),
and can better characterize uncertainty by directly
modeling error sources (2, 21, 23).

By incorporating realistic features such as
demography and dispersal, mechanistic models
commonly outperform correlative approaches in
projecting climate change responses (13, 20). For
example, mechanistic models consistently predicted
simulated species’ range dynamics over a period
of 75 years, whereas correlative models became
increasingly inaccurate over this same time frame
(20). Mechanistic models improve predictive accu-
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racy, especially when species face strong biotic
interactions, experience novel climates, or cannot
disperse far (13, 20, 24). Moreover, mechanistic
models can inform predictive efforts by indicating
processes (e.g., biotic limits on ranges) hidden by
current associations between environments and
species distributions (24). Although more work is
needed to craft more sophisticated and accurate
mechanistic models that are customizable for indi-
vidual species and ecosystems, the tools are already
mature enough to improve projections (2, 16, 19).

Mechanistic models, however, require high-
quality data about how a species’ unique biology
governs its responses to climate. Parameters provide
this information. For example, a parameter such as
population growth rate determines how popula-
tion abundances change through time. In contrast,
a model variable such as population abundance
describes emergent properties. Differentiating be-
tween parameters and variables is important
given the recent focus on harmonizing efforts
to collect variables that monitor the state of global
biodiversity (25). We believe that such endeavors
should focus not solely on collecting variables
that indicate the state of biodiversity, but also
on measuring mechanistic parameters critical
for predicting future responses.

Here, we identify the mechanistic data needed
to make substantial gains in predictive modeling.
Rather than focusing on one particular mecha-
nism (15, 18, 22, 26, 27), we take a comprehensive
approach, assess data availability for each mech-
anism, prioritize data needs, demonstrate how to
leverage sparse data to make general predictions,
and suggest how global coordination could facili-
tate these efforts. By synthesizing this information
in one framework, we aim to inspire the future
research agenda needed to develop the full pre-
dictive potential of mechanistic models. Consistent
with the Intergovernmental Panel on Climate
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Fig. 1. Most models of biological responses to cli-
mate change omit important biological mecha-
nisms. Only 23% of reviewed studies (4) included
a biological mechanism. Models that included one
mechanism usually incorporated others, but no
model included all six mechanisms. All models in-
cluded environmental variation, generally via cor-
relations, but usually did not explicitly incorporate
species’ sensitivities to environmental variation at
relevant spatiotemporal scales.
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Change (IPCC), we use “projection” to define all
descriptions of the future and reserve “forecast”
for the most likely projections.

Crucial biological information

In Table 1, we identify six mechanisms that
determine biological responses to climate change.
On the basis of these mechanisms, we assess data
availability for four well-studied species (Fig. 3).
We find that although information on the six key
mechanisms partly exists for species with high
economic value, it is incomplete for even the best-
studied species and absent for the vast majority
of Earth’s species. Consequently, the most realistic
models usually rely on sparse data or data ex-
trapolated from nonrepresentative populations,
environments, or species.

We next describe each mechanism in further
detail, highlighting key parameters and discussing
challenges of measurement, uncertainty, and sen-

sitivity. Here, uncertainty encompasses both
limited knowledge and random outcomes; sen-
sitivity denotes how changes in a parameter value
influence model outcomes. After describing these
mechanisms, we recommend how to collect data
efficiently and leverage imperfect data.

Physiology

Physiology mediates how climate conditions such
as temperature, growing degree-days, water avail-
ability, and potential evapotranspiration influence
survival, growth, development, movement, and
reproduction (I8, 28-30). Physiological parameters
include critical thermal minima or maxima (the
low and high temperatures at which organisms
cease organized movement), evaporative water
loss, photosynthetic rate, and metabolic rate. These
individual physiological responses often are used
to inform higher-level processes such as population
persistence and range shifts (29, 31). For example,

knowledge of the proportion of time a lizard
remains active outside its burrow, where it is
thermally neutral, can help in predicting its ex-
tinction risk under future climates (32).

Physiologists measure parameters from natural
observations or experiments in climate-controlled
chambers (28). However, using natural observa-
tions risks confounding responses to climate with
other environmental factors (28). High-priority
traits include responses to extreme heat or dryness,
where survival often declines steeply. Uncertainty
about physiological responses increases when we
lack information on habitat heterogeneity, local
adaptation, and physiological impacts on overall
fitness.

Demography, life history, and phenology

Demographic (birth, death, migration), life his-
tory (schedule of life cycle events), and phenological
(timing of life history events) traits play critical
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Fig. 2. A generic model integrates six biological mechanisms to predict
climate change responses. (A to C) The six mechanisms (A) are matched
by color to their representation in equations (B) simplified from (11) (see table
S1 for symbol descriptions). Results suggest how dispersal (blue-purple),
adaptive evolution (yellow), and their combination (red-orange) determine the
match between community-wide thermal traits and changing local temper-
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lines) after climate change.
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Space

atures (C). Temperatures increase before stabilizing at the white dashed line.
Black indicates no trait change. In cold regions, warm-adapted species disperse
into newly suitable, warmer habitats. In warm regions, evolution dominates
because no species with higher thermal tolerances exist. (D) Equilibrium
abundances of five hypothetical species (each indicated by differently colored
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roles in climate change responses (29, 33, 34).
Important parameters include birth and death
rates, age at maturity, development rate, and re-
productive investment. Parameters are best collected
on marked individuals across representative popu-
lations spanning different densities and climates.

A Fence lizard (Sceloporus undulatus)

C Speckled wood butterfly (Pararge aegeria)

Data quality

High
Medium

However, these efforts require long-term, costly
commitments. Changes in population abundances
from short-term weather variation can provide
proxies, but these become unreliable over time.
Long-term vegetation plots can provide detailed
demographic information for plants. Citizen scien-

B Sockeye salmon (Oncorhynchus nerka)

D European beech (Fagus sylvatica)

Environment

Fig. 3. Data gaps exist even for well-studied species. We rated data quality for some of the best-
studied species in climate change research: (A) fence lizard, (B) sockeye salmon, (C) speckled wood
butterfly, and (D) European beech. Data quality: high = near-complete information; medium = information
available but missing critical components; low = information mostly absent. We evaluated data availability
by examining models of climate responses, reviewing species-specific literature, and contacting experts.
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tists can collect data over large regions, on traits
such as flowering time or breeding date, but
concerns about data quality likely limit their use-
fulness for less easily measured traits such as
genetic variation.

Certain demographic parameters are especially
important. For example, adult survival often affects
population growth rate more than fecundity
does in long-lived species (35). Density depen-
dence and generation length also strongly affect
extinction risk from climate change (22). Addi-
tional uncertainty stems from local adaptation,
responses to novel environments, mismatched
phenology, community shifts, and interactions
with nonclimate stressors (15, 36, 37).

Evolutionary potential and
local adaptation

Assaying genetic variation is crucial for predicting
future responses (27, 38) because it could allow
populations to adapt to climate change in situ.
Unfortunately, scientists seldom know if, or how
quickly, populations can evolve climate-sensitive
traits (36). Moreover, species usually comprise
many locally adapted populations that each re-
spond differently to climate change (39). Species
might not shift their ranges with climate change
if locally adapted populations become isolated
and cannot colonize new habitats (39). Alterna-
tively, individuals dispersing from locally adapted
populations might track optimal climates across
landscapes, and thus might not need to adapt
locally (Fig. 2) (11).

The breeder’s and Price equations can be used
to predict responses to natural selection based
on selection strength and genetic (co)variances
(40). Genetic (co)variances are commonly mea-
sured through controlled breeding experiments
or pedigrees. However, these estimates can be-
come unreliable over long time scales or in novel
environments if selection regimes or adaptive
potential change (41). Also, genetic (co)variances
often vary among populations and environments,
thus requiring broad sampling and careful sen-
sitivity analyses. Other approaches involve tracking
evolution using long-term observations, recon-
structing evolution from layered propagule banks,
or applying experimental evolution (42, 43). For
instance, comparing Brassica rapa plants grown
from seeds collected before and after a drought
revealed rapid evolution of flowering time (43).
Past local adaptations to spatial climatic gra-
dients are easier to assess. However, these pat-
terns suggest past adaptive potential, not future
evolutionary rates (36). By scanning entire ge-
nomes, next-generation sequencing offers a pro-
mising tool to uncover fine-scale evolutionary
diversification (44), and declining cost for genomics
could rapidly expand our limited knowledge of
adaptive potential. Other frequently applied ap-
proaches include common garden experiments,
natural transplants, and observations of pheno-
typic variation (Table 1).

Adaptive potential and population differen-
tiation represent high-priority parameters because
ignoring them contributes high levels of uncer-
tainty (12, 27, 36, 43). For example, the Quino
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checkerspot butterfly was expected to become
extinct from climate change, but it persists after
adapting to live on a new host plant (45). Given
limited genetic and evolutionary information,
we will often need to generalize adaptive rates
across species based on characteristics such as
generation time, genetic isolation, phenotypic
variation, and phylogenetic position. Fortunately,
even coarse estimates of maximum adaptive
rate compared to climate change suggest tipping
points, where minor changes in climate initiate
major biological disruptions and thus represent
targets for facilitating adaptation in threatened
populations (46).

Species interactions

Species interactions often underlie unexpected
responses to climate change (10, 15), and most
extinctions attributed to climate change to date
have involved altered species interactions (47).
Surprises occur when specialist interactions such
as mutualism constrain species’ responses (48),
phenological mismatches alter species interactions
(87), or top consumers propagate climate change
effects throughout food webs (8). For instance,
high temperatures along the Pacific Coast exa-
cerbated predation by sea stars on mussels, which
caused local extirpations (49). Yet few models
account for species interactions explicitly, instead
assuming that each species responds independently
to climate change (6, 15) (Fig. 1).

High-quality information on species interactions
requires well-resolved information about inter-
acting species, interaction types and strengths,
spatiotemporal variation, and phenology. Un-
fortunately, such detailed information is usually
missing. One approach to overcome this deficit
is to analyze important subsets of strongly inter-
acting species (15). Less robust alternatives in-
clude estimating trophic position using isotopes,
understanding competition via diet breadth or
species co-occurrence patterns, extrapolating from
correlations between body size and trophic level,
or discerning species co-occurrence patterns from
metagenomics. High-priority parameters include
those characterizing specialist interactions, top-
down food web interactions, and timing mismatches
among interacting species. High uncertainty arises
from changes in species interactions themselves
(e.g., shifts from competition to facilitation) and
complex indirect effects that propagate through
food webs (9). Additional uncertainties arise from
species’ differential abilities to track climate change
in space, creating previously unseen communities
as coevolved interactions disappear and novel
interactions form (10).

Dispersal, colonization,
and range dynamics

To persist, species often must track suitable cli-
mates into new regions through dispersal, colo-
nization, and subsequent range shifts (50, 51).
Most models unrealistically assume that all orga-
nisms disperse comparably and across any land-
scape (Fig. 1) (26). In reality, dispersal depends
on the interplay among individual behavior, fit-
ness, habitat quality, and landscape configuration

aad8466-4

(52). Range shifts are particularly sensitive to
dynamics at range boundaries where low abun-
dances challenge accurate estimation (53).
Global positioning system units can record
fine-scaled individual movement but are costly
and unsuitable for many small organisms. Passive
integrated transponders, acoustic tags, and telem-
etry devices track smaller individuals at lower
cost, but these require strategically placed recorders.

Use available
parameters

Obtain
projections from
preliminary
model

Estimate
parameter
sensitivities

Growth rate
5

R/

0 20
Temperature

Target
sensitive
parameters

Neutral genetic variation across landscapes can
indicate movement patterns, but demographic
history can confound these estimates. Citizen science
sometimes enables cost-effective, coordinated, and
large-scale data collection, assuming adequate
quality control. Dispersal distances also can be
inferred from proxies [e.g., body size-dispersal
relationships in animals (51) and growth form,
seed mass, and vegetation type in plants (54)] until

Revise model to include
new parameters or
different relationships

Improve

estimates
for sensitive
parameters

Projections
improve
across
iterations

Validate with
monitoring
data

Fig. 4. Biological models improve iteratively through time by applying an adaptive modeling
scheme. Steps include parameterizing models using available data, estimating parameter sensitivities,
targeting better measurements for sensitive parameters, validating projections with observations, and
iteratively refining and updating the model to improve predictive accuracy and precision through time.
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better estimates become available. Long-distance
dispersal and fitness at range edges are high-
priority parameters because they introduce high
uncertainty in model outcomes (26), yet are dif-
ficult to measure.

Responses to environmental variation

Responses to climate change depend on species-
specific sensitivities and exposures to climate and
habitat variation at relevant spatiotemporal scales.
For instance, birds respond idiosyncratically to
different climate variables, depending on their
individual sensitivities to temperature and precipi-
tation change (55). Researchers must carefully
identify which specific climate components actu-
ally affect species. Many organisms respond not
to average annual temperature or precipitation,
but rather to temperature thresholds, season length,
humidity, potential evapotranspiration, or extreme
events such as droughts. Species also differ in the
relevant spatiotemporal scales of environmental
variation. Researchers should evaluate the envi-
ronment through the eyes of the organism. The
scales relevant to focal organisms often are meters
and minutes rather than the measurements in
kilometers and months typically available. Despite
the increasing availability of fine-scaled informa-
tion, most predictions are still made at coarse
scales, which can substantially reduce predictive
accuracy (56). Hierarchical sampling can maximize
information content by combining large-scale
sampling with targeted fine-scale measurements
that capture relevant gradients. Species charac-
teristics such as body size or generation length
also can provide proxies for missing data on spe-
cies’ environmental responses.

In addition, we need to integrate predictions
of climate change with other human disturbances,
including land use, pollution, invasive species, and
harvesting, to gauge the full extent of future envi-
ronmental change. Improving predictions of these
disturbances [e.g., (567)] and downscaling data to
relevant ecological resolutions are critical for
reducing future uncertainty.

Interacting mechanisms

Each mechanism potentially interacts with many
others. Specifically, climate responses depend prox-
imately on dispersal and demography; demog-
raphy in turn depends on physiology, species
interactions, and environments; and each trait
can evolve. For example, great tit birds in the Neth-
erlands do not lay eggs earlier in warmer springs
(involving demography, phenology, and environ-
mental responses), whereas their caterpillar prey
(species interaction) emerge earlier. This pheno-
logical mismatch between birds and their prey
decreases nestling fitness (demography) (37). Yet
great tits from the United Kingdom do breed
earlier in warmer springs, suggesting population
genetic differentiation (58). A challenge is to inte-
grate multiple interacting mechanisms without un-
necessarily increasing model complexity (Fig. 2).

A practical way forward

We recognize that the complexity of natural
systems will add uncertainty to even the best-
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parameterized and most realistic models (59).
Collecting the relevant information and devel-
oping realistic biological models will require
substantial investment in time and resources.
Despite these challenges, we believe that collect-
ing mechanistic data will both enhance our
fundamental understanding of the biological pro-
cesses that underlie climate responses and con-
tribute to more accurate, longer-term projections
that facilitate more effective conservation. Mech-
anistic models might not make accurate pre-
dictions initially, but learning from those failures
provides the insights that ultimately improve
projections. Predictive science advances most
quickly via iterative prediction-failure-improvement
cycles, and mechanistically grounded models often
quicken the pace of these advances (2, 3, 19). Even
small gains in understanding can improve future
models by indicating critical missing information,
highlighting key uncertainties, suggesting general
trait-based predictions for nonmodeled organisms,
and delimiting the best options for retaining bio-
diversity under a range of future policy scenarios.

Given limited time and resources, however, we
need to develop strategies that leverage existing
data and target essential information. Toward
this end, we advocate for an adaptive modeling
scheme that facilitates cost-effective model devel-
opment and data collection (Fig. 4). The process of
model testing and revision—steps rarely taken to-
day, but facilitated by a more systematic approach—
can reveal data of particular importance for im-
proving predictions. Researchers first parameterize
models with available data. In Table 1, we demon-
strate how to tailor data collection efforts to system-
specific constraints by listing ideal methods along
with more easily collected proxies. Researchers
then use independently collected variables from
monitoring efforts to test outcomes and fit un-
certain relationships. Sensitivity analyses identify
the most important parameters to collect, ensuring
that resources go toward producing the greatest
gains in accuracy. On the basis of these analyses,
researchers can collect improved or new param-
eter estimates and revise the model through
successive iterations of the approach. Crucially,
results from multiple independent models should
be combined because ensemble forecasts often
prove more accurate (3, 60). Researchers also
need to articulate clearly how uncertainty in pa-
rameter estimates and model choice propagates
at each modeling step. We recommend adopting
the IPCC’s standards (I) for classifying model con-
fidence and probabilistic uncertainty.

Several approaches are available to extend pro-
jections from a few carefully studied species to
many unstudied ones. We often possess extensive
information that is spread across many species
but is incomplete for any particular species. Emerging
phylogenetic and trait-based approaches could
fill these data gaps. Trait-based approaches use
trait correlations (e.g., between adult survival and
fecundity) to predict missing parameters for
species (50). Researchers also can simulate the
climate responses of virtual species with realistic
combinations of traits. For example, this virtual
approach predicted that 30% of terrestrial mam-
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mals might not keep pace with climate change
(61). Minimally, these efforts provide qualitative
insights about which types of species are most
vulnerable to climate change and therefore should
be targeted for future, in-depth study (22). Another
cost-effective strategy is to prioritize research on
species with both high climate sensitivity and dis-
proportionately large impacts on ecosystems. These
so-called biotic multipliers—often, top predators
and other keystone species—amplify small changes
in climate to produce large ecological effects (8)
such that their future dynamics drive overall eco-
system changes (9).

Conservation sometimes focuses on overall bio-
diversity rather than focal species. Estimates from
subsets of species might be cautiously extrapo-
lated to overall biodiversity, assuming suitable
representation across taxonomic and phylogenetic
diversity. However, trait-based approaches might
more efficiently suggest species that have vulner-
able trait combinations or amplify community-
wide impacts of climate change. For example,
focusing on top consumers and other keystone
species can indicate how their responses rever-
berate through entire food webs (8), thus further
extending the value of single-species forecasts.

Lastly, hybrid correlative-mechanistic approaches
offer a pragmatic initial approach to improving
predictions by adding key mechanisms to simple
models. For example, adjusting predicted ranges
from correlative models with species-specific dis-
persal abilities (62) or interacting species’ ranges
(48) can add realism and improve predictions.
Given the simplicity of most current approaches
(Fig. 1), even minimally more realistic models
might improve projections until more complicated
models can be developed (13, 19).

Global coordination

Global coordination will be critical at all stages,
including defining projection goals, developing
better models, collating and incorporating existing
data, determining which additional data might
improve forecasts, collecting new data, monitoring
biodiversity changes, and organizing and main-
taining data. Researchers and policymakers first
must agree on the nature of the projection itself,
including the accuracy, coverage, and time horizon
of forecasts. A global clearinghouse would be
useful to organize trait data, standardize termi-
nology (e.g., dispersal versus migration), and
monitor climate responses.

Tt would also be useful to form regional working
groups with local experts. Regional working groups
would define representative ecosystems and cli-
matic and environmental gradients in their region,
while taking advantage of existing data and long-
term monitoring sites. Groups would select species
representing a broad range of regional trait diversity
and build initial models with available data to
estimate parameter sensitivity. To address imme-
diate extinction threats, regional working groups
might also characterize the climate change risk
for threatened species on the International Union
for Conservation of Nature Red List. Groups should
then develop plans to refine sensitive parameters
through targeted funding opportunities and citizen
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science. Collected biological information must be
accessible, quality-checked, standardized, and main-
tained in databases such as Encyclopedia of Life’s
TraitBank (traits) and Global Biodiversity Infor-
mation Facility (species occurrences).

The IPCC’s development of climate change
predictions provides a template for how to achieve
comparable progress in biodiversity projections.
The IPCC’s biodiversity analog, the Intergovern-
mental Platform on Biodiversity and Ecosystem
Services, can also help to coordinate this effort.
Already, the Group on Earth Observations-
Biodiversity Observation Network is developing
alist of essential biodiversity variables (EBVs) for
monitoring global biodiversity (25) and is working
to address monitoring gaps (19). Despite some
overlap between the modeling parameters out-
lined here and EBVs, the two collection schemes
have divergent objectives. The EBVs monitor
changes in biodiversity and provide variables for
initializing and testing mechanistic predictions.
Mechanistic models, however, also require param-
eters governing Key processes, which often man-
date more detailed observations or experiments
than monitoring programs currently entail.

Combining predictive modeling with
robust scenario analysis

Collecting the data necessary to inform mechanistic
biological models presents an enormous challenge
given the vast diversity of life, its complexity, and
our inadequate knowledge about it. This inherent
complexity and stochasticity limits the accuracy of
biological predictions for policy and management
(59, 63), especially over long forecast horizons (3).
‘We must accept that even the best-informed predic-
tions could fail for a variety of unanticipated reasons.

An alternative approach to planning for climate
change develops conservation strategies robust to
a broad range of future scenarios (64), thus in-
suring against inevitable surprises. For example,
applying this “robust scenario” approach might
include maintaining dispersal corridors, pre-
serving existing natural habitat and genetic
diversity, and facilitating monitoring and flex-
ible, adaptive management (59, 65). This strat-
egy broadly protects biodiversity and depends
less on accurate predictions. However, practical
considerations will often limit the number of op-
tions that are feasible, especially when manage-
ment options for one species trade off against
another.

The two approaches are not mutually exclusive,
and we believe that they work best in tandem.
Mechanistic approaches likely will improve pre-
dictions at intermediate time horizons (e.g., 25 to
50 years), when current environmental correla-
tions break down and correlative approaches
become less accurate (3). Beyond this time frame,
even the best mechanistic models become un-
certain as key parameters can shift and uncertainty
propagates. Yet predictive models are still needed
to delimit plausible expectations, place bounds
on uncertainty, and direct limited resources toward
strategies that target the most threatened regions
and species (23, 59). Hence, a tandem approach
builds general insights from key representative
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species while preserving flexible options that
work when models fail.

Conclusions

Climate scientists in 1975 acknowledged their
inability to predict climate accurately and high-
lighted the many challenges to reaching this
objective (66). Despite these challenges, they out-
lined an ambitious long-term research program
aimed at understanding key mechanisms governing
climate change and collecting key pieces of missing
information. This program ultimately produced the
improvements in forecasting weather and climate
change that society benefits from today. We believe
that biology can and must do the same.

We advocate for a renewed global focus on

targeting the natural history information needed
to predict the future of biodiversity. Such efforts
would more than compensate for their cost by
improving our ability to understand, anticipate,
and thereby prevent biodiversity loss and dam-
age to ecosystems from climate change as well as
other disturbances. Ultimately, understanding how
nature works will provide innumerable benefits for
long-term sustainability and human well-being.
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