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Abstract Understanding how nonnative aquatic 
species respond to changing temperatures and salini-
ties is crucial for risk assessment in an era of rapid 
global change. Popular ornamental species such as 
goldfish (Carassius auratus) have become wide-
spread and locally abundant, owing to frequent 
release events and broad environmental tolerance. 
The critical thermal maximum  (CTmax) of cultivated 
goldfish obtained through the pet trade was measured 
to assess how their thermal tolerance is affected by 
acclimation to realistic levels of a co-occurring abi-
otic stressor. Goldfish were exposed to a combination 
of chloride concentrations (0 ppt, 1 ppt, and 6 ppt; 
selected based on those measured in urban ponds sub-
jected to road salt pollution) and current and elevated 
temperatures (18 °C, 21 °C, and 25 °C; selected based 
on climate projections for the Great Lakes basin). 
Results revealed a positive response to acclimation 
temperatures, with those fish exposed to temperatures 
near the species’ growth optimum having the high-
est  CTmax, irrespective of chloride treatment. Ther-
mal tolerance further characterized using metrics of 
agitation and acclimation potential revealed that high 

chloride levels (6 ppt) cause sub-optimal performance 
during heat stress, but acclimation to intermediate 
temperatures buffers these negative effects. There-
fore, the effects of multiple potential stressors on 
thermal tolerance could mediate the invasive success 
and impact of ornamental goldfish released in urban 
waterbodies. Goldfish populations presently acclimat-
ing to increased warming and salt pollution in urban 
ponds would likely have a competitive advantage 
when subsequently introduced to wild ponds that will 
be altered by these stressors under expanding urbani-
zation in future years.
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Introduction

Temperature limits the distribution of species, espe-
cially ectotherms, largely by governing their meta-
bolic rates: the speed at which resources are obtained 
and converted to usable energy (Hutchison 1961). 
The role of climate warming in mediating the spread 
and impact of invasive species is a priority research 
area (Ricciardi et  al. 2021). Data on thermal toler-
ance metrics are needed to inform invasive species 
risk assessment, as the greatest effect of climate 
change on species might not be through increasing 
annual means but rather extreme temperatures (Sta-
chowicz et al. 2002). A co-occurring and potentially 
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interactive stressor with climate warming in north 
temperate inland waters is rising salinity (Jeppesen 
et al. 2020), and both stressors affect fish metabolism, 
oxygen consumption, survival, growth, and repro-
duction (Bœuf and Payan 2001). Urban environmen-
tal traits (e.g., dark coloration, impervious material, 
reduced vegetation buffers) amplify warming due to 
the absorption and re-emission of energy—the urban 
“heat island effect” (Touchaei and Wang 2015; Wang 
and Akbari 2016). Urban ponds experience higher 
mean and maximum summer temperatures with pro-
nounced daily fluctuations (Brans et  al. 2018). Wild 
(rural and semi-rural) ponds and lakes are predicted 
to experience progressively similar conditions under 
expanding urbanization.

The direct impact of temperature on physiology 
and behavior renders data from thermal metrics such 
as critical thermal maxima and minima  (CTmax and 
 CTmin) essential prerequisites for conservation man-
agement of ectotherms under climate change (Teal 
et  al. 2018).  CTmax measures an organism’s lethal 
upper thermal tolerance and can test how thermal tol-
erance is affected by acclimation history (Becker and 
Genoway 1979; Stillman 2003). In  CTmax experimen-
tal trials, fish acclimated to a certain temperature will 
be subjected to a constant rate of heating until their 
locomotor activity becomes disorganized with contin-
ued exposure (Bennett and Beitinger 1997).

Expansion of road density and associated impervi-
ous surfaces increases the demand for road salt appli-
cation and thus facilitates runoff of chloride contami-
nants in melting snow during spring thaws. Sodium 
chloride (NaCl) is the predominant deicing agent 
used in northeastern North America, causing chlo-
ride pollution to increase in parallel with urbanization 
(Dugan and Arnott 2022; Dugan et  al. 2017, 2020). 
In Canadian urban ponds, chloride levels range from 
1 ppt (Montreal, QC; Lévesque et  al. 2020; Wallace 
and Biastoch 2016) to 6 ppt (Col. S. Smith Reservoir, 
Toronto, Canada; Mayer et al. 1999).

In addition to warming and chloride pollution, 
a third burgeoning problem for urban ecosystems is 
invasive species. Quantifying and understanding an 
invader’s response to changing abiotic stressors is 
critical for predicting colonization success and eco-
logical impact in different environmental contexts 
(Ricciardi et  al. 2021). The pet trade, specifically 
aquarium species, is a major source of freshwa-
ter invaders (Dickey et  al. 2023; Evers et  al. 2019; 

Padilla and Williams 2004). This ever-expanding 
industry is highly unregulated despite the risks it 
poses to aquatic ecosystems (Padilla and Williams 
2004). Online trade has increased the accessibil-
ity and distribution of nonnative species, even those 
whose sale and possession are illegal (Borges et  al. 
2021). Many pets are intentionally released by own-
ers unaware of responsible disposal methods; a cus-
tomer Montreal survey revealed that ~ 7% of pet fish 
owners have reported releasing at least one fish with 
reasons for disposal being either the pet’s aggressive 
behavior, large size, illness, rapid reproduction, or 
other (Gertzen et al. 2008). As many as ~ 10,000 fish 
are estimated to be released by pet owners annually 
in the upper St Lawrence River centered at Montreal 
(Gertzen et al. 2008).

Popular ornamental species such as goldfish 
(Carassius auratus), which have become wide-
spread and locally abundant in urban areas (Copp 
et  al. 2005), tend to be successful invaders due to 
frequent release events (Duggan et  al. 2006; Rixon 
et al. 2005) and broad environmental tolerance. Gold-
fish tolerate temperatures up to 44.7  °C (Ferreira 
et  al. 2014) and salinities up to 30 ppt (Wang et  al. 
2023). Reported optimal temperatures for growth are 
25–28 °C (Audige 1921; Imanpoor et al. 2012; Kes-
temont 1995; Khieokhajonkhet et al. 2023). Reported 
optimal salinity levels are generally 0–1 ppt (Alti-
nokand and Grizzle 2001; Imanpoor et  al. 2012; 
Lawson and Alake 2010), with some studies report-
ing 6 ppt or higher (Küçük 2013; Luz et  al. 2008). 
Osmoregulation theory suggests that salinities near 
the iso-osmotic point reduce energy expenditure for 
ionic regulation, whereas metabolic theory predicts 
increased metabolism with warming, both of which 
may optimize growth and reproduction at specific 
environmental conditions (Walker et al. 2020). Urban 
waters are warming at a disproportionate rate (Brans 
et  al. 2018; Hester and Bauman 2013) toward sum-
mer mean temperatures that align with the growth 
optimum for goldfish (25–28 °C), a shift that would 
be expected to increase their per-capita environmental 
effects (Iacarella et al. 2015).

Studies that have investigated the influence of 
salinity on fish thermal tolerance have yielded diver-
gent results (Haney and Walsh 2003). In some cases, 
salinity significantly affected the thermal tolerance, 
with acclimation to salinities nearing the iso-osmotic 
optimum (Sardella et  al. 2008; Kutty et  al. 1980). 
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Other studies have found that salinity does not impact 
thermal tolerance (Hines et al. 2019), rather the tim-
ing of salinity acclimation can play an important role 
(Shaughnessy and McCormick 2018). These studies 
report on anadromous, eurythermal, and euryhaline 
fishes; in contrast, very few studies focus on freshwa-
ter fishes such as goldfish (Lahlou et  al. 1969) who 
often encounter these co-occurring stressors in urban 
environments.

To evaluate the effects of warming and salinity on 
the thermal tolerance of goldfish, we tested predic-
tions informed by metabolic theory of ecology and 
iso-osmotic theory. We predicted that thermal toler-
ance will be maximal with acclimation to tempera-
tures and salinities nearest the optima reported for 
goldfish, i.e., 25 °C and 0–1 ppt (Audige 1921; Fer-
reira et  al. 2014; Luz et  al. 2008). Reported growth 
optimums discussed in this study relate to goldfish 
growth rates reared under these conditions. Fur-
thermore, we predicted that thermal tolerance will 
be higher when one of the environmental variables 
(salinity or temperature) is within the species’ opti-
mal range.

Methods

Animal provenance and acclimation

Goldfish were purchased from a pet store in Montreal, 
Quebec. Since no external features allow for identi-
fying sex in goldfish, juveniles (instead of adults) 
were chosen for  CTmax trials to control for possible 
effects of sex on thermal resistance (Hollands 1956) 
and known salinity tolerance during that life stage 
(1–10 ppt, > 6 ppt is stressful) (Lawson and Alake 
2010; Luz et al. 2008). We used fish with a mass of 
15.75 g ± 6.60 and standard length of 7.72 cm ± 0.55, 
representing juveniles that are age 1 (Lorenzoni et al. 
2007).

Goldfish were housed in climate-controlled cham-
bers, following McGill University animal care pro-
tocols (SOP519 and AUP 8267). Upon arrival from 
the pet store, fish were left to acclimate in a cham-
ber at 18 °C for a minimum of 24 h, to allow water 
and chamber temperatures to equalize and avoid 
temperature shock. Fish were transferred to 20-gal 

(50.8 × 27 × 31.12  cm) mesh-covered aquaria, popu-
lated with 2 fish per tank and stocked with plant mim-
ics, coarse gravel, air stones, and filters, for water 
quality and habitat enrichment purposes. Goldfish 
were fed ~ 0.5% of their body weight daily using com-
mercialized protein pellets (3 Nutrafin sinking pellets/
day) (Du et  al. 2006) and were kept on a 12 h:12 h 
(L/D) photoperiod. Following a 2.5-week acclimation 
period to lab conditions, fish were exposed to a daily 
change of 1 °C in the growth chamber until the treat-
ment temperature was established.

Experiments were conducted with goldfish accli-
mated for 3  weeks (Bennett and Beitinger 1997; 
Nyboer and Chapman 2017; Reid and Ricciardi 2022) 
to temperatures of 18  °C, 21  °C, and 25  °C, which 
are within the ranges of the current and forecasted 
mean maximum summer surface water temperatures 
of the nearshore Great Lakes (Trumpickas et al. 2009; 
Trumpickas et  al. 2015). An intermediate value of 
21 °C was included to allow a more complete explo-
ration of the environmental matching hypothesis by 
allowing the detection of any deviation from reported 
optimums. Fish were also acclimated for 3-week 
acclimation to 0 ppt, 1 ppt, and 6 ppt  Cl− concentra-
tions. These salinity treatments were chosen to reflect 
the highest chloride levels recorded in Montreal area 
ponds (Lévesque et  al. 2020; Wallace and Biastoch 
2016) and near a reported maximum chloride level 
of an urban waterbody in Toronto, Canada (Col. 
S. Smith Reservoir) receiving runoff from a multi-
way highway (~ 6 ppt) (Mayer et al. 1999). They are 
also within goldfish iso-osmotic thresholds, not yet 
stressful for juveniles (Altinokand and Grizzle 2001; 
Lawson and Alake 2010; Luz et al. 2008). Salinities 
higher than 6 ppt have been shown to negatively affect 
growth, food intake and conversion, increase cortisol, 
and cause muscle dehydration (Luz et al. 2008). The 
chloride treatments were initiated by dissolving table 
salt (Windsor Brand, NaCl) in dechlorinated water in 
increments of 1 ppt per day until a treatment level of 
either 1 ppt or 6 ppt was reached and timed so that 
temperature and chloride treatments achieved final 
levels on the same day; similar salinity increments 
were conducted by previous studies with no adverse 
effects (Küçük 2013). Salinity was monitored using 
a YSI meter, and chloride was recorded using Hach 
2,751,340 Chloride Test Strips High Range.
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Critical thermal maxima  (CTmax) experiments

Upper thermal tolerance limits  (CTmax) of goldfish 
were tested following established protocols (McDon-
nell and Chapman 2015; McDonnell et al. 2021; Reid 
and Ricciardi 2022; Wells et  al. 2016). Following a 
24-h starvation period, one fish was transferred to 
a 10-gal tank (50 × 19 × 25  cm), inside an individ-
ual isolation box (i.e., a commercial breeding box; 
26 × 15 × 16  cm), with opaque divers to prevent fish 
from seeing the other fish in the second experimental 
setup. The initial water conditions of the experimen-
tal aquaria were the same as the treatment conditions 
of the fish being tested. The fish was left to acclimate 
for 30 min in the breeding tank with aeration and an 
additional 30 min with the heater (a temperature-con-
trol unit [JULABO CORIO™ CD heating immersion 
circulator]), to ensure acclimation to trial condition 
(Potts et al. 2021; Reid and Ricciardi 2022).

Trials were initiated by increasing water tempera-
ture at a fixed rate of 0.3 °C/min (Becker and Geno-
way 1979). Two trials were run simultaneously and 
recorded using a camera. The recording was revis-
ited to verify observations post-trial. Exposure to an 
increase in temperature continued until fish displayed 
a loss of equilibrium (LOE), denoting the  CTmax tem-
perature (Becker and Genoway 1979; Bennett and 
Beitinger 1997; Hutchison 1961). Here, we defined 
LOE as a non-lethal endpoint marked when a fish 
fails to maintain dorsal–ventral orientation for a mini-
mum of 3 s (Becker and Genoway 1979; Bennett and 
Beitinger 1997; Hutchison 1961). At this point, the 
fish has become so disoriented that it loses the ability 
to escape conditions that would impact its fitness or 
result in death (Becker and Genoway 1979; Bennett 
and Beitinger 1997; Wells et al. 2016).

Another behavior change, agitation, was noted 
throughout the trial (Kochhann et  al. 2021; McDon-
nell and Chapman 2015). Agitation temperature  (Tag) 
is recorded when a fish searches for a cooler ref-
uge, exhibited as rapid swimming and interpreted as 
avoidance behavior (Kochhann et  al. 2021; McDon-
nell and Chapman 2015; Wells et  al. 2016). In this 
study, it was defined as the temperature at which the 
fish begins to quickly swim around the tank for longer 
than 40  s in an attempt to escape the isolation box. 
This behavior was determined based on previous 
pilot trials. Thermal tolerance capabilities are further 
revealed by measuring the agitation window  (Taw), 

the difference between  CTmax, and the agitation tem-
perature (Wells et  al. 2016) and comparing it to the 
LOE. A large difference between  Taw and LOE indi-
cates suboptimal tolerance capacities, such that the 
fish cannot maintain normal behavior for long periods 
during heating events (Kochhann et al. 2021), thereby 
impacting fitness. Here, we refer to optimal thermal 
tolerance as a heightened ability to withstand thermal 
stress denoted by higher  CTmax values and lower  Tag.

Temperature and trial length were recorded using 
JULABO EasyTEMP Professional software. After the 
display of LOE, temperature increases were halted, 
and the fish was returned to a recovery tank equipped 
with 30 ℃ aerated water, which was gradually cooled 
back to the respective treatment temperature. Follow-
ing recovery, fish were weighed (g) and measured 
(standard length, mm). No fish was reused for another 
 CTmax trial, and if a death occurred during the trial, 
the data was discarded. A total of 59  CTmax trials 
were conducted with 5 to 7 replicates performed for 
each treatment.

From the two behavioral observations  (CTmax, 
 Tag), additional metrics were derived: thermal agita-
tion window  (Taw, the difference between  CTmax and 
 Tag; Wells et  al. 2016), acclimation agitation win-
dow  (Aaw, the difference between  Tag and acclimation 
temperature; McDonnell et  al. 2021), and modified 
thermal safety margin (TSM, the difference between 
 CTmax and the acclimation temperature; McDonnell 
et al. 2021).

Statistical analysis

All data were analyzed and visualized using R and 
R Studio (version 4.2.2 and 2022.07.2). The effect 
of acclimation temperatures and chloride on the 
response variables  CTmax,  Tag,  Taw,  Aaw, and TSM 
were tested for goldfish using linear mixed models 
with treatment and condition factor as fixed effects 
and housing tank as a random effect using the lme4 
package (Bates et  al. 2014). The condition factor 
was calculated using the Fulton factor (K = mass/
length3) with a modified equation (K = [mass/ (stand-
ard  length0.29)] × 100), where the exponent was 
derived from the regression of log (mass) against 
log (length) (Richter et  al. 2000). Condition factor 
was included in the models to account for body mass 
effects on response variables. The confirmation of 
fixed effects included in the model for each response 
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variable was supported by AIC and BIC scores using 
the stats package (R Core Team 2022). The random 
effect of housing tanks was included in each model 
to account for potential variability among individu-
als due to housing conditions. Based on the AIC and 
BIC results, a linear regression including tempera-
ture, chloride, and the interaction between tempera-
ture and chloride, as a fixed effect was selected for all 
5 response variables. Type III ANOVA was used to 
test for differences in response variables  CTmax,  Tag, 
 Taw,  Aaw, and TSM using the car package (Fox and 
Weisberg 2019). The effect size was calculated using 
Eta partial squares. To generate pairwise estimates, 
post hoc Tukey–Kramer tests were conducted with 
95% confidence intervals. All model assumptions 
were investigated and validated using Levene’s test of 
equal variance, and the Shapiro–Wilk test for normal-
ity and plotting residuals using the car package. Pair-
wise comparisons between response variables  (CTmax 
and  Tag) were made using t test. All data was visual-
ized by plotting it using ggplot2 package (Wickham 
2016).

Results

CTmax was observed to vary in response to acclima-
tion temperature and chloride independently, but not 
by the interaction. Goldfish displayed significantly 
higher  CTmax values when acclimated to 21  °C and 
25 °C (Table 1, Table 2, and Fig. 1).  CTmax increased 
with acclimation to increasing temperatures.

Chloride treatment of 1 ppt and 6 ppt also contrib-
uted to higher  CTmax, although to a lesser extent than 
temperatures 25 °C and 21 °C (Table 1 and Table 2). 
For chloride, 1 ppt induced the longest time display 
before LOE, followed by 6 ppt then 0 ppt. Since no 
interaction was detected, our results do not support 
the prediction that acclimation to a combination of 
optimal variables (25  °C/0 or 1 ppt) would exhibit 
optimal response. Instead, we found that acclimation 
to optimal temperature (25  °C) and chloride (1 ppt) 
independently promote heightened response, with 
temperature having a larger effect. Freshwater condi-
tions (0 ppt) did not significantly promote enhanced 
thermal response. The effect of temperature was even 
stronger at 21  °C, below the reported optimum, in 
comparison to the effects of chloride treatments (1 
ppt and 6 ppt) (Table 1).

The thermal agitation temperature  (Tag) was influ-
enced by temperature and chloride independently, 
as well as by their interaction (21 °C/6 ppt) (Table 1 
and Table 2). High temperature (25  °C) acclimation 
resulted in a higher thermal agitation temperature, 
whereas high chloride treatment (6 ppt) caused a 
decline; however, the interaction of 21 °C/6 ppt was 
significant, buffering the effects of high chloride 
as seen by the higher  Tag value at 21  °C/6 ppt than 
18 °C/6 ppt or 25 °C/6 ppt (Table 2 and Fig. 1). For 
each of the nine treatments, there was a significant 
difference between the temperature at which fish dis-
played LOE  (CTmax) and their agitation temperature 
(Table 3 and Table S2). As such, the thermal agitation 
window  (Taw) follows a similar trend whereby chlo-
ride levels of 6 ppt reduced thermal capacities (i.e., 
higher  Taw), but, the response was buffered at inter-
mediate temperatures through a significant interac-
tion at 21 °C/6 ppt causing a smaller  Taw (Table 2 and 
Fig. 1).

However, temperature alone did not influence  Taw 
(Table 1 and Table 2). The acclimation agitation win-
dow  (Aaw) was also influenced in the same manner; 
negatively affected by 6 ppt chloride and positively by 
the interaction of 21 °C/6 ppt, with temperature alone 
having no impact (Table 1 and Fig. 2).

Conversely, the thermal safety margin is influenced 
by temperature acclimation to 18  °C, and by 6 ppt 
chloride, but to the latter a small degree (Table 1 and 
Fig.  3). For all metrics analyzed, the fish condition 
factor (Fulton’s index) did not explain variation in the 
response variable, as indicated through the AIC and 
BIC results of the models (Table S1).

Only one fish died during the  CTmax trials under 
the treatment of 18 °C/1 ppt.

Discussion

Our experiments indicated the resilience of goldfish 
to two major stressors encountered in north temperate 
urban watersheds. Acclimation to high temperature 
and salinity will increase  CTmax (Fig. 1), but consid-
eration of other thermal tolerance metrics  (Tag,  Taw, 
 Aaw, TSM) reveals that high salinities have negative 
effects on thermal tolerance that are buffered at inter-
mediate temperatures (Table 1). These results suggest 
acute responses to increases in temperature, such as 
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Table 1  Linear regression 
models assessing the effects 
of acclimation treatments 
(temperature × chloride) on 
thermal tolerance metrics of 
C. auratus 

Fixed effects Estimate Standard error df t value p value

Critical thermal maximum  (CTmax)
 (Intercept) 35.66 0.34 48 105.52  < 2e − 16***
 21 °C 2.02 0.43 48 4.68 1.34e − 05***
 25 °C 4.39 0.44 48 9.91 3.40e − 13***
 1 ppt 1.08 0.44 48 2.44 0.019*
 6 ppt 0.94 0.44 48 2.12 0.039*
 21 °C:1 ppt 0.18 0.60 48 0.31 0.76
 25 °C:1 ppt  − 0.89 0.63 48  − 1.43 0.16
 21 °C:6 ppt  − 0.77 0.60 48  − 1.29 0.20
 25 °C:6 ppt  − 0.59 0.61 48  − 0.96 0.34
Agitation temperature  (Tag)
  (Intercept) 30.05 0.89 45 33.83  < 2e − 16***
 21 °C 1.44 1.16 45 1.24 0.22
 25 °C 5.21 1.16 45 4.48 5.01e − 05***
 1 ppt 1.83 1.20 45 1.52 0.14
 6 ppt  − 7.60 1.16 45  − 6.54 4.97e − 08***
 21 °C:1 ppt 0.36 1.67 45 0.22 0.83
 25 °C:1 ppt  − 2.39 1.67 45  − 1.43 0.16
 21 °C:6 ppt 5.86 1.60 45 3.65 0.00068***
 25 °C:6 ppt 1.70 1.60 45 1.06 0.30
Thermal agitation window  (Taw)
  (Intercept) 5.61 0.95 45 5.91 4.24e − 07***
 21 °C 0.65 1.24 45 0.52 0.61
 25 °C  − 0.83 1.24 45  − 0.67 0.51
 1 ppt  − 1.08 1.29 45  − 0.84 0.40
 6 ppt 8.54 1.24 45 6.87 1.61e − 08***
 21 °C:1 ppt  − 0.033 1.79 45  − 0.018 0.99
 25 °C:1 ppt 1.83 1.79 45 1.03 0.31
 21 °C:6 ppt  − 6.70 1.72 45  − 3.90 0.00031***
 25 °C:6 ppt  − 2.28 1.72 45  − 1.33 0.19
Acclimation agitation window  (Aaw)
  (Intercept) 12.05 0.89 45 13.56  < 2e − 16***
 21 °C  − 2.56 1.16 45  − 2.20 0.033*
 25 °C  − 1.79 1.16 45  − 1.54 0.13
 1 ppt 1.83 1.20 45 1.52 0.13
 6 ppt  − 7.60 1.16 45  − 6.54 4.97e − 08***
 21 °C:1 ppt 0.36 1.67 45 0.22 0.83
 25 °C:1 ppt  − 2.39 1.67 45  − 1.43 0.15
 21 °C:6 ppt 5.86 1.60 45 3.65 0.00068***
 25 °C:6 ppt 1.70 1.60 45 1.06 0.30
Thermal safety margin (TSM)
(Intercept) 17.66 0.31 45 56.51  < 2e − 16***
 21 °C  − 1.92 0.41 45  − 4.68 2.63e − 05***
 25 °C  − 2.61 0.41 45  − 6.39 8.23e − 08***
 1 ppt 0.74 0.42 45 1.76 0.086
 6 ppt 0.94 0.41 45 2.29 0.027*
 21 °C:1 ppt 0.33 0.59 45 0.56 0.58
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in the form of extreme heat events that are expected 
to increase in frequency and intensity in aquatic eco-
systems (Woolway et al. 2021).

CTmax experiments highlighted the broad ther-
mal capabilities of goldfish, which were able to 
withstand temperatures up to 40.04  °C before dis-
playing LOE. This is consistent with published 
upper thermal tolerances of goldfish acclimated to 
a similar temperature (Ferreira et al. 2014; Ford and 
Beitinger 2005; Khieokhajonkhet et al. 2023; Yanar 
et  al. 2019). Here, as in other studies, there is a 

uniformly positive trend between thermal acclima-
tion and  CTmax, which holds across a broad range of 
body masses, 2.45–16.47 g (Khieokhajonkhet et al. 
2023; Yanar et al. 2019). Salinity tolerance has been 
found to vary with goldfish life stage (and thus body 
size), with tolerance of younger fish reduced (max 
tolerance of 6 ppt: Imanpoor et al. 2012) compared 
with older life stages (max tolerance of 20 ppt; 
Küçük 2013). In this study, we did not find an effect 
of size (mass and length amalgamated via Fulton’s 
condition factor) on  CTmax (Table  S2), contrary to 

Table 1  (continued) Fixed effects Estimate Standard error df t value p value

 25 °C:1 ppt  − 0.56 0.59 45  − 0.95 0.35
 21 °C:6 ppt  − 0.84 0.56 45  − 1.49 0.14
 25 °C:6 ppt  − 0.59 0.56 45  − 1.04 0.31

Asterisks denote significant 
p values (* < 0.05; 
** < 0.01; *** < 0.001)

Table 2  Results of 
a type III ANOVA 
examining the effects of 
acclimation treatments 
(temperature × chloride) 
on the thermal tolerance 
metrics of C. auratus. Effect 
size was calculated using 
Eta partial squares. Models 
used were based in the best 
fit AIC criteria

Asterisks denote significant 
p values (* < 0.05; 
** < 0.01; *** < 0.001)

Factor χ2 df p value Effect size

Critical thermal maximum  (CTmax)
 (Intercept) 11,135.06 1  < 2e − 16*** 1.00
 Acclimation temperature 100.66 2  < 2e − 16*** 0.94
 Acclimation chloride 6.68 2 0.036* 0.51
 Interaction (temperature*chloride) 6.30 4 0.178 0.50
Agitation temperature  (Tag)
  (Intercept) 1144.37 1 2.2e − 16*** 0.98
 Acclimation temperature 23.00 2 1.015e − 05*** 0.98
 Acclimation chloride 82.47 2  < 2.2e − 16*** 0.98
 Interaction (temperature*chloride) 20.83 4 0.00034*** 0.98
Agitation window  (Taw)
  (Intercept) 34.93 1 3.42e − 09*** 0.61
 Acclimation temperature 1.70 2 0.43 0.61
 Acclimation chloride 79.76 2  < 2.2e − 16*** 0.61
 Interaction (temperature*chloride) 22.35 4 0.00017*** 0.61
Acclimation agitation window (AAW)
  (Intercept) 183.98 1  < 2.2e − 16*** 0.89
 Acclimation temperature 4.95 2 0.084 0.89
 Acclimation chloride 82.47 2  < 2.2e − 16*** 0.89
 Interaction (temperature*chloride) 20.83 4 0.00034*** 0.89
Thermal safety margin (TSM)
  (Intercept) 3192.93 1  < 2.2e − 16*** 1.00
 Acclimation temperature 42.21 2 6.83e − 10*** 1.00
 Acclimation chloride 5.57 2 0.062 1.00
 Interaction (temperature*chloride) 6.42 4 0.17 1.00
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what was reported for other species (Recsetar et al. 
2012). We investigated the effects of chloride on the 
tolerance of a single stage (juveniles), whereas com-
parisons with other life stages would have allowed 
an assessment of ontogenetic patterns.

We had predicted an enhanced capacity for gold-
fish to respond to acute thermal stress when accli-
mated to multiple conditions within the presumed 
optimum range. Contrary to our prediction, there 
was no interaction detected for the 25  °C/1 ppt or 
25 °C/0 ppt treatments (Table 2). Instead, we found 
that acclimation at the reported growth optimal 
temperature of 25  °C yielded the highest  CTmax 
results (40.40  °C) irrespective of chloride expo-
sure, followed by acclimation at 21  °C (Table  1). 
The optimal salinity level of 1 ppt contributed to 
a heightened  CTmax response, as did the salinity 
treatment of 6 ppt, but this was not the case for 0 
ppt (Table  1). The lack of thermal enhancement 
(i.e., higher  CTmax, lower  Tag) in freshwater (0 ppt) 

Fig. 1  Mean values of critical thermal maximum 
 (CTmax; ± SE) and thermal agitation temperature  (Tag; ± SE) of 
goldfish (Carassius auratus) acclimated to 9 individual treat-
ments, grouped here by the three acclimation temperatures, a 
18  °C, b 21  °C, and c 25  °C, plotted by their chloride level 
(n = 57 for  Tag and n = 54 for  CTmax). Fish were acclimated to 
treatments for 3 weeks before trials. For the  CTmax results, post 
hoc Tukey Kramer test (95% CI) reveals significant differences 
between the temperature groups and chloride groups, but not 
between chloride levels within the temperature groups. The 
differences between  CTmax and  Tag for each treatment were all 
statistically significant (t test). The distance between  CTmax and 
 Tag represents the thermal acclimation window  (Taw)

Fig. 2  Mean values of thermal agitation window and thermal 
acclimation window (± SE) of goldfish (Carassius auratus) 
acclimated to 9 individual treatments, grouped here by the 
three acclimation temperatures, a 18 °C, b 21 °C, and c 25 °C, 
and plotted by their chloride level (n = 57). Fish were accli-
mated to treatments for 3 weeks before trials

Fig. 3  Thermal safety margin (TSM; ± SE) of goldfish (Caras-
sius auratus) acclimated to the 9 possible treatments, grouped 
here by the three acclimation temperatures, a 18 °C, b 21 °C, 
and c 25 °C, plotted by their chloride level (n = 57). Fish were 
acclimated to treatments for 3 weeks before trials
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suggests that the salinity optimum for thermal toler-
ance capacity is within the reported 1–6 ppt range 
(Küçük 2013; Luz et al. 2008).

Acclimation to temperatures of < 21 °C and salini-
ties of 1–6 ppt likely reduce the energy needed for 
metabolism and osmoregulation, allowing for an 
enhanced response to acute heat stress, as indicated 
by a high  CTmax that was not significantly different 
from the 0 and 1 ppt conditions—contrary to expec-
tations. While this study assumed a growth optimum 
for salinity near 1 ppt, there is much inconsistency in 
the literature concerning reported tolerance and per-
formance across life stages and fish size, whereby 
the reported optimum is much higher in some cases 
(Imanpoor et  al. 2012; Küçük 2013), which perhaps 
explains why we detected positive effects at 6 ppt.

It was also predicted that acclimation to either one 
of the variables at an optimal range would heighten 
thermal tolerance when the other variable was non-
stressful. While there was support for this claim at 
the 25  °C treatments, enhanced thermal capabilities 
(higher  CTmax) were not consistent at the 1 ppt or 0 
ppt treatment across all temperatures. These results 
might reflect a potential trade-off in energy allocation 
for goldfish, whereby the cost of metabolic regulation 
is more reduced than that of osmoregulation near the 
optimal temperature. Across these treatment levels, 
temperature appears to be a primary driver, whereas 
chloride is secondary, in mediating the physiological 
capabilities of goldfish (Walker et al. 2020).

Conversely, acclimation temperature alone 
played no influence on the thermal agitation win-
dow; instead, salinities of 6 ppt accelerated the onset 

agitation behavior (i.e., lower  Tag) in comparison to 
the other reference groups, creating a larger ther-
mal window (Fig. 1). However, acclimation to 25 °C 
affected the agitation temperature itself. During 
acute heat stress episodes, the conditioned avoidance 
response of goldfish is sensitive to acute tempera-
ture changes (cf. Hoyland et  al. 1979), with height-
ened avoidance behavior (i.e., higher  Tag) occurring 
in 25  °C acclimated fish (Table  2). While exposure 
to 6 ppt prolongs the onset of LOE, possibly through 
a reduction in iso-osmotic regulation cost, salinity-
associated behavioral changes might be at play by 
reducing  Tag and thus increasing  Taw. A study by Law-
son and Alake (2010) found that non-stressful salini-
ties (4–10 ppt) are associated with a weaker threat 
response via increases in erratic movement. Their 
results help explain our finding that, although accli-
mation to temperatures (21–25 °C) allows goldfish to 
withstand greater heat stress, acclimation to salinity 
6 ppt increases avoidance behavior, as indicated by 
a lower  Tag value, and thereby causes sub-optimal 
performance under heat stress conditions (Table  1). 
At a sub-optimal temperature of 21 °C, the onset of 
avoidance behavior is delayed by comparison. Reyn-
olds and Casterlin (1979) found an “activity well” (a 
decline in activity) in goldfish with acclimation to a 
temperature near their final preferendum (28  °C). 
We hypothesize that, when combined with another 
stressor, this activity well shifts, owing to a trade-off 
in energy allocation of metabolism and osmoregula-
tion. The high chloride level also impedes the ability 
of goldfish to acclimate to temperature changes, as 
indicated by the acclimation agitation window; how-
ever, there is an overlap between when the fish begin 
to agitate and their acclimation window at the 6 ppt 
treatment and the intermediate temperature of 21 °C.

Some studies suggest that thermal optima for 
aquatic ectotherms are overestimated in the absence 
of consideration of metabolic demands and energy 
acquisition (Buba et  al. 2022; Delong et  al. 2018; 
Uiterwaal and DeLong 2020). In contrast to a pre-
sumed monotonic relationship between tempera-
ture and metabolic rate, fish might instead per-
form optimally at an intermediate temperature in a 
unimodal response (Delong et  al. 2018; Uiterwaal 
and DeLong 2020). In our study, the interaction of 
temperature and chloride could cause a trade-off 
in energy costs (cf. Walker et  al. 2020), changing 
performance at the reported optimum variables. 

Table 3  Summary of mean  CTmax (n = 54) and  Tag (n = 57) 
values for each of the 9 treatments. The mean is followed by 
the standard error for each metric (SE)

Treatment CTmax Tag

18 °C/0 ppt 35.66, 0.48 30.05, 0.33
18 °C /1 ppt 36.74, 0.48 31.87, 0.74
18 °C /6 ppt 36.60, 0.29 22.45, 0.68
21 °C /0 ppt 37.68, 0.20 31.48, 1.12
21 °C /1 ppt 38.94, 0.27 33.67, 0.40
21 °C /6 ppt 37.84, 0.33 29.74, 0.73
25 °C /0 ppt 40.05, 0.17 35.26, 0.13
25 °C /1 ppt 40.23, 0.08 34.69, 0.12
25 °C /6 ppt 40.40, 0.11 29.36, 1.36
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For other stenohaline fishes, stress response was 
strengthened with chronic exposure to high salini-
ties strengthened, but was weakened with tempera-
ture increases; presumably, high salinities reduce 
the baseline concentration of cortisol, which in turn 
facilitates stress reactivity when exposed to addi-
tional stressors (Walker et al. 2020).

Implications for goldfish invasion risk

The realistic treatment scenarios used here add insight 
into the role of urban ponds in acclimating goldfish 
to anthropogenic stressors. We propose that chronic 
exposure to high temperatures and salt pollution 
in urban ponds confers a competitive advantage to 
goldfish as they subsequently invade wild (rural and 
semi-rural) lentic ecosystems that will likely become 
increasingly urbanized in the future. This is analo-
gous to the scenario in which populations adapted to 
human-altered habitats in their native range perform 
well when invading similar human-altered habitats in 
a novel range (‘Anthropogenically Induced Adapta-
tion to Invade’ hypothesis; Hufbauer et al. 2012).

The capacity for goldfish to acclimate to urban 
stressors is compromised by a narrow acclimation 
window at 6 ppt salinities, diluting their potential to 
tolerate stress from heat waves or general warming 
trends. The early onset of agitation behavior that gen-
erally occurs at 6 ppt can also hinder goldfish estab-
lishment or post-establishment success, as a conse-
quence of fish replacing routine adaptive behavior 
(such as foraging, shelter refuge, and feeding) with 
thermal avoidance behavior (Wells et al. 2016). Given 
that this redirection of energy could result in reduced 
competitiveness if natives are more tolerant to chlo-
ride, multi-stressor experiments should be conducted 
on various resident species commonly found in habi-
tats invaded by goldfish.
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