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ABSTRACT

Non-native species can be major drivers of ecosystem alteration, especially through changes in trophic interactions.
Successful non-native species have been predicted to have greater resource use efficiency relative to trophically analogous
native species (the Resource Consumption Hypothesis), but rigorous evidence remains equivocal. Here, we tested this
proposition quantitatively in a global meta-analysis of comparative functional response studies. We calculated the log
response ratio of paired non-native and native species functional responses, using attack rate andmaximum consumption
rate parameters as response variables. Explanatory variables were consumer taxonomic group and functional feeding
group, habitat, native assemblage latitude, and non-native species taxonomic distinctiveness. Maximum consumption
rates for non-native species were 70% higher, on average, than those of their native counterparts; attack rates also tended
to be higher, but not significantly so. The magnitude of maximum consumption rate effect sizes varied with consumer
taxonomic group and functional feeding group, being highest in favour of non-natives for molluscs and herbivores.
Consumption rate differences between non-native and native species tended to be greater for freshwater taxa, perhaps
reflecting sensitivity of insular freshwater food webs to novel consumers; this pattern needs to be explored further as addi-
tional data are obtained from terrestrial and marine ecosystems. In general, our results support the Resource Consumption
Hypothesis, which can partly explain how successful non-native species can reduce native resource populations and restruc-
ture food webs.

Key words: ecological impact, effect size, feeding response, impact prediction, invasion hypothesis, invasion science,
invasive alien species, meta-analysis, predation rate, risk assessment.
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I. INTRODUCTION

Rates of introduction of non-native species into new environ-
ments are on the order of hundreds of species per year in
many regions, with no sign of deceleration (Seebens
et al., 2021; IPBES, 2023; Briski et al., 2024). Invasive non-
native species (sensu Soto et al., 2024) are among the main
drivers of ecosystem alteration worldwide (Bellard, Cassey
& Blackburn, 2016; Blackburn, Bellard & Ricciardi, 2019;
Jaureguiberry et al., 2022), causing negative impacts through
various mechanisms –most notably through direct consump-
tion via predation and herbivory (Lockwood, Hoopes &
Marchetti, 2007). Overexploitation of resources by invasive
non-native species and associated disruption of ecological
networks is expected to become an increasingly prevalent
extinction driver worldwide over the coming century
(Strona & Bradshaw, 2022). Several examples of the poten-
tial for non-native species to extirpate natives are notorious,
such as the introduction of Nile perch (Lates niloticus) to Lake
Victoria that drove many dozens of endemic cichlids to
extinction and caused the decline of other carnivore species
(Kruuk & Goudswaard, 1990; Goudswaard, Witte &
Katunzi, 2002). Another is the case of the peacock bass (Cichla
monoculus) in South America, which reduced or extirpated
native prey due to predation, and native piscivores due to
competition (Pelicice & Agostinho, 2009; Pelicice, Latini &
Agostinho, 2015; Franco, García-Berthou & Santos, 2021).

Many impactful non-native species are highly efficient in
consuming available resources (Funk & Vitousek, 2007;
Morrison & Hay, 2011). Potential underlying reasons for this
pattern include release from parasites and predators (Enemy
Release Hypothesis sensuKeane &Crawley, 2002) or a lack of
evolutionary history of the native resource with the novel
consumer [Prey Naïveté Hypothesis and/or non-native
Novel Weapons Hypothesis (Ricciardi et al., 2013;
Buckley & Catford, 2016)]. If non-native species have a pro-
pensity to exploit resources at greater rates, it could lead to
ramifying effects on resource populations and food
webs – and offer a species trait to predict ecological impacts
(Dick et al., 2013).

It has been claimed that per-capita rates of consumption,
such as those quantified by functional responses (FRs; see
Section II and Fig. 1), are useful for quantifying and predict-
ing non-native species impacts in the field (Dick et al., 2014;

Faria et al., 2023a). If efficient resource consumption is a gen-
eral trait among invasive non-native species, it is expected
that parameters of their FRs would be higher when com-
pared to those of native analogues (Dick et al., 2017a). By
measuring consumption across a realistic gradient of resou-
rce densities, FR assessments allow the inference of density-
dependent effects. At low resource densities, if non-native
species are more efficient at consuming resources when the
resources are scarce, then such consumers are more likely
to extirpate resource populations. If resources are abundant
and the non-native species displays higher consumption
rates, this could in the long term drive increased non-native
population abundance, fitness, and spread. Thus, the com-
parative functional response (CFR) approach has been
increasingly used in invasion science to predict and quantify
non-native species ecological impacts (Faria et al., 2023a).
Per-capita effects quantified through laboratory experiments
can be a proxy for field impacts and could thus support rapid

I

II

III

Resource density

noitp
musno

C
ra

te 1/h

a

Fig. 1. General functional response types (linear I – orange;
hyperbolic II – green; and sigmoidal III – violet). The attack
rate parameter (a) determines the initial slope of the curve in
Type I and II functional responses, whereas the inverse of
handling time (1/h, dashed line) coincides with the asymptote
in Type II and III functional responses, determining the
maximum consumption rate.

Biological Reviews 100 (2025) 1163–1180 © 2025 Cambridge Philosophical Society.

1164 Larissa Faria and others

 1469185x, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13179 by M

cgill U
niversity, W

iley O
nline L

ibrary on [08/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



assessment and prioritisation of high-impact species for
management (Ricciardi et al., 2021; Faria et al., 2023a).
Although biotic and abiotic environmental factors have been
shown substantially to mediate outcomes of FR studies (Faria
et al., 2023a), these contexts can be explicitly tested rather
than viewed as nuisance factors (Dick et al., 2014).

Despite the rapid accumulation of evidence across study
systems using the CFR approach (Faria et al., 2023a), the
hypothesis that successful non-native species have higher
FR parameters than trophically analogous native species
has not yet been quantitatively tested. A previous study,
analysing data from fish, found that non-native status did
not strongly influence FR parameters (Buba, DeLong &
Belmaker, 2022); however, data used in that study were not
matched with native comparators as was recommended by
Dick et al. (2014).

Here, we perform the first global meta-analysis of pub-
lished CFR studies to address the Resource Consumption
Hypothesis (Ricciardi et al., 2013; Dick et al., 2014; Faria
et al., 2023a). We tested the following specific predictions: (i)
differences in consumption rates are greater for freshwater
thanmarine and terrestrial taxa, reflecting prey naïveté stem-
ming from differences in insularity of their respective biota
(Cox & Lima, 2006); (ii) differences in consumption rates will
be lower in more diverse assemblages (i.e. from tropical
and sub-tropical latitudes) than in less diverse assemblages
(temperate latitudes) because greater predator richness
reduces the evolutionary mismatch created by a novel con-
sumer (Schemske et al., 2009); and (iii) non-native species that
represent novel (unshared) genera in the region containing
the native analogues to which they are compared will have
higher impact than non-native species that belong to genera
shared with the native biota (the Taxonomic Distinctiveness
Hypothesis; Ricciardi & Atkinson, 2004).

II. FUNCTIONAL RESPONSE IN ECOLOGY

The consumption rate of a species (such as a predator) as a
function of the availability of a resource (prey) is known as
the functional response (FR) (Solomon, 1949; Holling,
1959b). Generally, the FR describes how much an individual
can consume across a gradient of resource densities in a spec-
ified amount of time. This relationship can be broadly
described by at least three different FR types (Fig. 1). If there
is a linear increase in the consumption rate as the availability
of resources increases up to an abrupt limit, this relationship
is characterised by a Type I FR (Holling, 1959b). However,
many consumers will be limited by the time they spend pur-
suing, subduing and consuming one resource item, decelerat-
ing the rate of consumption as resources become more
abundant. This results in a hyperbolic relationship between
resource availability and consumption rate that characterises
a Type II FR (Holling, 1959b). The third possibility is that, at
low densities, resources are less likely to be found by the con-
sumer or that the consumer will prefer an alternative more

abundant resource (driven by frequency-dependent predation
such as prey switching). In these cases, a Type III FR can
manifest, characterised by a sigmoidal curve (Holling,
1959b). Less common forms include a dome-shaped Type
IV curve, with a reduction in consumption rate at very high
resource densities (DeLong, 2021). This can happen when
there are swarming effects, such as consumer confusion or
accumulation of toxic substances produced by dangerous
prey (Jeschke, Kopp & Tollrian, 2004).

FRs are typically derived through laboratory experiments
(although field data can also be used, e.g. Smout et al., 2014)
consisting of a gradient of resources offered to a consumer for
a prespecified experimental duration, and then quantifying
how much has been consumed after the available time
(DeLong, 2021). Consumption data are then modelled using
the relevant equation according to the FR type (i.e. typically
Type I, II, or III, alongside flexible models across types). The
most important parameters in FR models are (cf. Jeschke,
Kopp &Tollrian, 2002) the attack rate and the handling time
(Holling, 1959a). Attack rate a is also known as the attack
constant, capture rate, maximum clearance rate, instanta-
neous rate of discovery, and related terms, and describes
the space or volume containing resources that is effectively
cleared by the consumer per unit of time (Holling, 1959a;
DeLong, 2021). This parameter describes the initial slope
of the FR curve (Fig. 1), being directly related to consump-
tion of resources when they are in low abundance
(DeLong, 2021). The greater the attack rate, the greater will
be the impact of a consumer on resources that are at low den-
sities. Handling time (h) is the time needed for capturing, con-
suming, and digesting one resource item, and limits the
amount of resource consumed when resources are highly
abundant (Fig. 1; Holling, 1959a; DeLong, 2021). The
shorter the handling time, the greater the number of resource
items consumed. Therefore, the inverse of handling time
(1/h) determines the highest consumption rate of a consumer
when resources are not limiting, a parameter called maxi-
mum consumption rate (MCR; sometimes maximum preda-
tion rate, maximum feeding rate, and related terms) that
corresponds to the asymptote of the Type II and Type III
FR curves (DeLong, 2021). Furthermore, attack rate
and handling time can be assimilated into the Functional
Response Ratio (FRR), through deriving a/h (Cuthbert
et al., 2019), which captures both parameters for a holistic
metric of the FR.

Determining the type and magnitude of FR is relevant, as
it directly influences population dynamics (DeLong, 2021;
Kalinkat et al., 2023). A Type II FR may be destabilising, as
resources are consumed at high rates even when they are at
low abundances, possibly leading to extinction (Hassell,
1978). On the other hand, a Type III FR is more stabilising,
as consumption rates are low when resources are scarce, giv-
ing the resource population refugia to increase its abundance
in the long term (Holling, 1959b; Murdoch & Oaten, 1975).
It is important to note, however, that the FR is not a fixed
trait of a species or population; it can change from Type II
to Type III when habitat complexity increases, for example
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(DeLong, 2021; Kalinkat et al., 2023). Moreover, FR
parameters may change with several biotic and abiotic
variables such as temperature, body size ratio, and para-
site infection, and they vary among individual consumers
within a given species and population (DeLong, 2021).

III. METHODS

(1) Selection of studies and observations

We systematically searched for a subset of CFR studies that
compared the FRs of non-native and analogous native spe-
cies consuming the same resource. This subset was taken
from a previously published systematic review of FRs in inva-
sion science (Faria et al., 2023a), with the literature search
updated in May 2023 following the same methodology as
Faria et al. (2023a). We conducted our review according to
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses for Ecology and Evolutionary Biology
(PRISMA-EcoEvo) guidelines (see online Supporting
Information, Appendix S1; O’Dea et al., 2021).

We assessed if non-native species have higher per-capita

effects on resources than their native counterparts, using
proxies of feeding efficiency and voracity from FR
models. Therefore, we sought studies that provided the
FR parameters attack rate (a), handling time (h), and/or
MCR comparably between non-native and native species
(i.e. modelled using the same equation). Studies that failed
to provide a detailed description of experiments (e.g. number
of replicates for each resource density) were excluded.We only
included studies where the response variable was consumption
via feeding; thus omitting, for example, studies using par-
asitoids (response recorded as attacks or oviposition) from
our analyses, which are generally rare in CFR studies (Faria
et al., 2023a).

We considered each pair of non-native and native species
consuming the same resource within studies as a separate
observation. As previously reviewed by Faria et al. (2023a),
many studies perform more than one FR experiment for
the same pair of consumers under different biotic and abiotic
treatments. In these cases, we chose to retain data from the
most context-realistic treatment (when this was explicit from
the text) or from the treatment that was comparable between
studies. For example, Dickey et al. (2021b) tested two salinities
(10 and 16 ppt) and analysed data from consumption and
consumption plus wounded prey. In this case, we decided
to retain only observations from the ambient salinity (16 ppt)
and excluded those that correspond to a potential future
scenario of sea freshening (10 ppt, less representative
currently). Likewise, we retained data from observations of
consumption-only analysis, as these are comparable among
studies. If the treatments within studies were deemed equally
realistic (e.g. different temperatures that correspond to cur-
rent natural seasonal ranges), we averaged all parameter esti-
mates for each consumer into a single composite sample

(when provided, standard errors were propagated from
individual estimates), to avoid pseudo-replication.
Nonetheless, our final data set still contained more than
one observation per study, particularly capturing unique
non-native versus native pairs (e.g. the same pair of consumers
feeding on a different resource, or different non-native spe-
cies compared to the same native analogue). This non-
independence within studies is accounted for statistically
(see Section III.3). The screening of 209 observations was
performed by one author (L.F.) and subsequently checked
by two other authors (R.N.C. and J.W.E.D.) to ensure agree-
ment. Observations that these authors assessed as equally
realistic had their parameter estimates averaged into a single
composite sample. Likewise, observations considered less
realistic by these authors were excluded, and the remaining
observations were kept for further analysis.

(2) Data extraction

When available, we extracted a, h, and MCR parameters
estimated from FRmodels and their corresponding standard
errors (S.E.) for each consumer from text or tables
within research articles. For parameter data presented as fig-
ures, we used WebPlot Digitizer (https://automeris.io/
WebPlotDigitizer) to extract mean values and S.E. Input
data used to model FR parameters (i.e. the sum of repli-
cates of all initial densities used in the experiment) were
recorded as the sample size, except when S.E. from esti-
mates were obtained through bootstrapping (in these
cases, we considered the number of bootstraps as the sam-
ple size). Sample size and S.E. (when available) were used
to calculate standard deviations (S.D.) for each consumer.
We used the h parameter estimate to calculate the MCR

for each consumer species as 1/h, to standardise it as units
of resource consumed per consumer, per experiment. The
corresponding MCR S.E. was propagated from the S.E.
of h. When hwas not provided, we extracted theMCR as cal-
culated by the study. All data were extracted by the same
author (L.F.).
Information on consumer taxonomic group, functional

feeding group, habitat, native species sampling site, resource
origin and resource source were also recorded as provided by
authors or searched for in the relevant literature (see Table 1
for definitions). From the native species sampling site, we
obtained coordinates to categorise the latitude of native
assemblages as tropical/sub-tropical (0� to 35� N and S) or
temperate (>35� N and S). We also used the native species
sampling site to check in the available literature if the
native community shared any species from the same genus
as the non-native species, considering the finest spatial
scale possible, thereby inferring taxonomic distinctiveness.
For example, in a study where the native species was sam-
pled at River Lagan, Northern Ireland, Dikerogammarus

villosus was the non-native species studied (Bollache
et al., 2008). The genus Dikerogammarus belongs to the
Ponto-Caspian faunistic complex and was thus classified
as a distinctive genus for Northern Ireland, where it is
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not yet present (Özbek & Özkan, 2011). References used
for this classification are provided in Dataset S1. Taxo-
nomic distinctiveness between non-native species and the
native recipient community was only tested for observa-
tions where the resource was a native species sourced in
the wild to ensure they were ecologically relevant.

(3) Meta-analysis

Considering that FR parameters are usually estimated from
the same model (and thus likely correlated), we performed
a meta-analysis for each response variable (a and MCR) sep-
arately. As many studies did not provide S.E. to allow us to
calculate S.D. (72% of studies without in the a data set, and
61% of studies without in the MCR data set), we employed
the “Missing Cases” method, as proposed by Nakagawa
et al. (2023b), where sampling variances of observations with
missing S.D. are estimated by imputing the pooled coefficient
of variation (CV) from the subset of studies that report
S.D. We decided to handle missing data in this way because
alternatively we would have needed to rely on an unweighted
meta-analysis, which, given the low number of complete case
observations, would significantly decrease the sample size (k)
of our analysis.

For complete observations (i.e. those with S.D. data), we
calculated the effect size and sampling variance (v) based on
the log response ratio (lnRR), as originally proposed by
Hedges, Gurevitch & Curtis (1999), with the bias correction
recommended by Lajeunesse (2015):

lnRR= ln
mNN

mN

� �
+
1
2

CV2
NN

nNN
−
CV2

N

nN

� �
ð1Þ
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NN
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+
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N

nN
ð2Þ

wheremNN is the mean FR parameter (a orMCR) of the non-
native species, mN is the corresponding mean parameter
estimated for the native comparator, CV (S.D./m) is the coef-
ficient of variation for each consumer and n is the sample size.
For observations with missing S.D., we calculated the effect
size (lnRR) and the sampling variance using the equations
proposed by Nakagawa et al. (2023b):
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where CVNNi and CVNi are the CVs from the ith study
(study; i = 1, 2, …, K; assuming the number of effect
sizes = the number of studies = K). If FR parameters of
non-native species are greater than those of native species,
the lnRR will be positive. Overall, a mean ratio that is signif-
icantly greater than zero (i.e. confidence intervals do not
cross zero) would corroborate the hypothesis that non-native
species have higher consumption rates than trophically anal-
ogous native species.

Given the dependence of our data set (more than one
observation per study and multiple non-native species com-
pared to the same native analogue – “shared control”), we
applied a multilevel meta-analysis model with “study” as a
random effect (Mengersen, Jennions & Schmid, 2013; Noble
et al., 2017; Nakagawa et al., 2023c). To account for shared-
sampling variance between effect sizes due to a common
native comparator species, we used Robust Variance Estima-
tors (RVE) (Pustejovsky & Tipton, 2022; Nakagawa

Table 1. Variables extracted from studies for each observation
included in the meta-analysis.

Variable Definition

Consumer taxonomic
group

Taxonomic group of the consumer
defined as per Pyšek et al. (2008).

Consumer functional
feeding group

Functional feeding group of the
consumer defined as carnivore,
herbivore or omnivore, according to
the focal study or relevant literature.

Habitat Type of habitat where consumer and
resource interact, that is freshwater,
marine (including brackish) or
terrestrial, according to the focal
study.

Native species sampling
site

Where native species specimens were
collected for use in experiments,
according to the study methods.

Resource origin Origin of the resource species (native or
non-native) according to the focal
study or relevant literature. In some
cases, resources were not specified as
species and therefore origin was not
identified.

Resource source Origin from where resource specimens
used in experiments were sourced
(wild or cultivated).
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et al., 2023c). First, a null multilevel model was fitted using
restricted maximum likelihood for each data set without
explanatory variables (moderators) to assess if the overall
effect size differed significantly from zero.We then quantified
the amount of heterogeneity (I2 total) of the null model using
the function i2_ml implemented in the “orchaRd” package
(Nakagawa et al., 2023a). Given the resulting high levels of
I2 total (>98% for both data sets) (Higgins &
Thompson, 2002), we employed meta-regression models to
explain heterogeneity and test our predictions.

We fitted univariate meta-regression models with con-
sumer taxonomic group and consumer functional feeding
group (Table 1) as explanatory variables in exploratory ana-
lyses to assess their influence on the variability of calculated
effect sizes, and with habitat, latitude, and taxonomic distinc-
tiveness to test our predictions. We ran separate models
including a single moderator each time due to insufficient
sample sizes to assess interaction terms. We fitted our model
to account for heterogeneous variances between groups,
assuming heteroscedasticity to reduce Type 1 error rates
(Rubio-Aparicio et al., 2020).

All meta-analytic and meta-regression models were fitted
using the rma.mv function in the “metafor” package v.4.4-0
(Viechtbauer, 2010), setting test = “t” to obtain statistics and
CIs based on a t-distribution. Moreover, meta-regressions
were fitted after setting struct = “HCS” to assume a hetero-
scedastic compound symmetry (heterogeneous variances).
Results were visualised through forest-like plots with the orch-
ard_plot function in the “orchaRd” package (Nakagawa
et al., 2023a). All analyses and plots were performed in the
R environment v. 4.3.1 (R Core Team, 2023).

(4) Sensitivity analysis and publication bias

We checked the assumption of normality of our lnRR esti-
mates using Geary’s test improved by Lajeunesse (2015)
and performed a sensitivity analysis excluding effect sizes that
failed the test (i.e. ≥3) as suggested by Lajeunesse (2015). We
employed the “Missing Cases” method given the large pro-
portion of missing data in our data set (which exceeded the
55% previously assessed by Nakagawa et al. (2023b)). How-
ever, it has been suggested that the “All Cases” method
may perform better under several situations (Nakagawa
et al., 2023b). We therefore repeated our analysis using the
“All Cases” method as a sensitivity analysis to compare the
mean estimate and its confidence limits. Finally, because we
chose an arbitrary value of ρ = 0.6 to calculate our adjusted
sampling variance matrix in the RVE analysis, we re-ran our
model with ρ = 0.1 and 0.9 to check the robustness of
our results, as suggested by Tanner-Smith & Tipton (2014).

To check for publication bias, we used the approach pro-
posed by Nakagawa et al. (2022), consisting of an extension
of regression-based methods (i.e. Egger’s regression test) that
is suitable for lnRR effect sizes and non-independent data.
For this, we ran a multilevel meta-regression model using
the square root of the inverse of the effective sample size as
the moderator. If the intercept of the model was not

statistically different from 0, we considered it as a potential
adjusted estimate to check the robustness of our results
(Noble et al., 2017; Nakagawa et al., 2022).

IV. RESULTS

A total of 62 studies were retrieved from our search and
screened for eligibility. From these, 52 studies were included
in the meta-analysis resulting in a total of 125 observation
pairs of non-native versus native species (Fig. 2) that had either
data on a, MCR or both response variables. Each study
yielded an average of 2.4 ± 2.3 (mean ± S.D.) effect sizes,
with a range of 1–12. Many observations involved compari-
sons from studies that compared more than one non-native
to the same native species (56% of effect sizes).
Most observations came from omnivores (74%)—mainly

crustaceans and fishes (89%)—from freshwater habitats
(86%) in temperate locations (72%). Only 44 observations
were suitable to test the taxonomic distinctiveness hypothesis,
and inmost cases (82%) the native community did not share a
species of the same genus as the non-native species.
Overall, we found higher maximum consumption rates for

non-native species compared to native trophic analogues
(lnRRMCR = 0.285, 95% CI = 0.1–0.47; Fig. 3B). Attack
rates also tended to be higher in non-native species,
but this difference was not significant (lnRRa = 0.209,
95% CI = −0.02–0.44; Fig. 3A). From total heterogeneity
(I2), the study random effect explained 41% of heterogeneity
in the a data set, and 30% in the MCR data set.
Effect sizes of attack rate were not significantly positive

across consumer taxonomic groups (Fig. 4A; Table 2).
Regarding consumer functional feeding group, non-native
carnivores had a significantly higher attack rate compared
to native analogues (Table 2, Fig. 4B); however, effect sizes
did not differ significantly among functional feeding groups
(test of moderators: F(2,45) = 1.79, P = 0.17). Effect sizes of
attack rate of freshwater taxa were significantly positive
(Table 2, Fig. 4C), but did not significantly differ among hab-
itats (F(2,45) = 1.03, P = 0.36). Effect sizes were not signifi-
cantly different from zero regarding latitude of the native
assemblage (Table 2, Fig. 4D).
Molluscs, insects and crustaceans had significantly positive

effect sizes of MCR (Table 2, Fig. 5A); however, taxonomic
groups did not differ significantly (F(4,47) = 1.74, P = 0.16).
Contrary to the trend observed for attack rate, non-native
carnivores did not have a significantly higher MCR com-
pared to natives, but a positive effect size was observed for
non-native omnivores and herbivores (Table 2, Fig. 5B).
Nevertheless, we found no significant differences among func-
tional feeding group effect sizes (F(2,49) = 2.35, P = 0.11). As
observed for attack rates, MCR was significantly positive only
for freshwater taxa (Table 2, Fig. 5C), while no significant dif-
ferences in effect sizes were observed among habitats
(F(2,49) = 1.35, P = 0.27). Observations from tropical native
assemblages were significantly positive (Table 2, Fig. 5D) and

Biological Reviews 100 (2025) 1163–1180 © 2025 Cambridge Philosophical Society.

1168 Larissa Faria and others

 1469185x, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13179 by M

cgill U
niversity, W

iley O
nline L

ibrary on [08/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



also significantly different from observations of temperate
regions (F(1,50) = 5.08, P = 0.03).

We did not find evidence that non-natives from a distinct
genus relative to those in the native community have higher
FR parameters (Table 3, Fig. 6). By contrast, non-natives that
share their genus with the native community had significantly
positive effect sizes for MCR (Table 3, Fig. 6B), with results
differing in strength from consumers that do not share the
same genus (F(1,42) = 4.99, P = 0.03).

Only two effect sizes (a and MCR from the same observa-
tion pair) failed to meet the normality assumption calculated
by Geary’s test. The sensitivity analysis performed without

these two effect sizes did not differ significantly from our orig-
inal null model (Table S1). Applying the “All Cases”method
did not significantly change the results obtained using the
“Missing Cases” method (i.e. similar estimates and 95% CI;
Table S1). Finally, we obtained the same results using
ρ = 0.1 and 0.9 as those originally obtained considering
ρ = 0.6 (Table S1).

The intercept of our meta-regression testing for pub-
lication bias was not significant for both response vari-
ables (a: mean intercept = −0.591, P = 0.22; MCR: mean
intercept = 0.128, P = 0.75), thus we did not find evidence
of a publication bias using this method. Additionally, we

Subset of CFR studies
obtained from Faria et al.

(2023a)
K = 46

Studies evaluated regarding
adequate data

K = 62

77 observations from
equally realistic

treatments

Observations evaluated
from 52 studies

k = 209

–10 studies that failed to
meet inclusion criteria:

• 4 data not presented
as parameters

• 3 data not comparable
between consumers

• 1 sample size not 
provided

• 2 data not from
consumption

–34 observations
excluded with reasons:

• 2 data not presented
as parameters

• 12 data less realistic
than other treatments

• 20 data not
comparable between
studies

CFR studies retrieved from
updated search

K = 16

27 observations
included as 
composites

98 observations
included as originally

presented

Total number of studies and observations
included in meta-analysis

K = 52; k = 125

noitacifitnedI
gnineercS

dedulcnI

Fig. 2. PRISMA flowchart showing the number of studies (K) that used the comparative functional response (CFR) approach and
observations (k) as pairs of non-native and native species consuming the same resource that were retrieved, screened and included
in our final data set.
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can consider the mean estimate of this meta-regression as an
adjusted estimate of our overall effect size (Table S1).
Regarding a, the mean estimate changed to a higher value
of 0.273 with 95% CI not crossing the zero line, and for
MCR there was a subtle change from 0.285 to 0.295
(Table S1).

V. DISCUSSION

Many hypotheses in invasion science aim to explain the sub-
set of non-native species that are both successful invaders
and cause significant negative impacts in invaded ecosys-
tems (Catford, Jansson & Nilsson, 2009; Ricciardi
et al., 2013; Enders et al., 2020; Daly et al., 2023). Non-native
species are often deemed more damaging than native spe-
cies to resource populations (Salo et al., 2007; Paolucci,
MacIsaac & Ricciardi, 2013; McKnight et al., 2016). Thus,
the Resource Consumption Hypothesis posits that

successful and impactful non-native species are able to use
key resources more efficiently than trophically analogous
native species (Ricciardi et al., 2013; Dick et al., 2014; Faria
et al., 2023a). Here, we provide the largest quantitative test
of this hypothesis to date using data from CFR studies. We
found that, in general, non-native species have higher maxi-
mum consumption rates and a tendency for higher attack rates
compared to analogous native species, corroborating the
hypothesis. Nevertheless, the consumptive per-capita effects of
non-native species vary depending on other factors, such as
their taxonomic group and functional feeding group, as well
as with the ecosystem or habitat where the interaction takes
place.

(1) Resource consumption hypothesis

Attack rates were significantly higher only for non-native car-
nivores and freshwater taxa, although tendencies were
mostly positive in favour of non-native species. These results

k � 116 �48�

Non−native > NativeNon−native < Native

I2 � 98.12

−4 −2 0 2 4

Precision (1/SE) 10 20 30 40

A Attack rate

k � 125 �52�

Non−native > NativeNon−native < Native

I2 � 99.49

−2 −1 0 1 2
Effect size (lnRR)

Precision (1/SE) 25 50 75 100 125

B Maximum consumption rate

Fig. 3. Orchard plots of the overall effect size (lnRR) obtained by our null multilevel meta-analysis model for both response variables:
(A) attack rate and (B) maximum consumption rate. Positive effect sizes indicate that non-native species have higher functional response
parameters than natives. The mean estimated effect size (solid filled circle) is considered statistically significant when the thick horizontal
error bars (95% confidence intervals) do not cross the dashed line at zero. Thin horizontal whiskers indicate prediction intervals. k is the
number of effect sizes followed by the number of studies in parentheses. I2 depicts the total heterogeneity of the model.
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(Figure 4 legend continues on next page.)
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reveal that, in general, non-native species do not differ from
native species in efficiency of consuming resources when
these are at low densities. This aligns with two related
hypotheses linked to resource availability: the Increased
Resource Availability hypothesis, which states that the
invasion success of non-native species increases with
the availability of resources (Sher & Hyatt, 1999) and the
Resource-Enemy Release hypothesis, which predicts that
non-native species released from their natural enemies can
spendmore energy on reproduction, and likewise successfully
invade when resources are highly available (Blumenthal,
2006). Both hypotheses are rooted in the idea of spatiotem-
poral fluctuations in resources favouring non-native species
over natives (Davis, Grime &Thompson, 2000). At low avail-
ability of resources, native species could perform equally or
better than more specialist non-native species, as they are
well adapted to these conditions; however, when resource
availability increases, for example in response to human dis-
turbance, non-native species will likely outperform native
species (Daehler, 2003). Although most of the studies pro-
viding evidence for these hypotheses were performed with
plants (Liu & van Kleunen, 2017; Knauf et al., 2021), the
postulated mechanisms may also apply to animal con-
sumers. Experimental design characteristics may also

explain this pattern, since FR studies typically employ
non-replacement protocols, whereby resources are not
replenished following consumption. This could dampen
the detection of differences at low resource densities
between natives and non-natives as they rapidly consume
all available resources (Alexander et al., 2012). However,
since our study compares non-natives with natives, and
the absolute parameters/FR shapes are thus not of as
much interest as the comparisons, the above explanations
are considered robust.
Conversely, maximum consumption rates were signifi-

cantly higher overall, specifically for invertebrates (except
arthropods), omnivores and herbivores, freshwater taxa and
non-native species that shared their genus with the native
community. Non-native invertebrates (except arthropods)
showed higher MCR than natives, which is consistent with
findings of a comparison of native versus non-native consumer
effect sizes in the field (Paolucci et al., 2013), but this pattern
was not observed for fishes. Among invertebrates, molluscs
presented the highest differential MCR, but results are
mainly representative of two species of non-native herbivo-
rous gastropods, the highly invasive Pomacea canaliculata

(golden apple snail) and the non-invasive Planorbarius corneus

(great ramshorn snail) preying on a diversity of macrophyte

(Figure legend continued from previous page.)
Fig. 4. Orchard plots showing effect size (lnRR) estimates of attack rate from univariate meta-regressions with potentially influential
moderators: (A) consumer taxonomic group, (B) consumer functional feeding group, (C) habitat and (D) latitude of the native
assemblage. Positive effect sizes indicate that non-native species have higher functional response parameters than native species in
that group. Mean effects for each group (solid filled circles) are statistically significant when thick horizontal error bars
(95% confidence intervals) do not cross the dashed line at zero. Thin horizontal whiskers indicate prediction intervals. k is the
number of effect sizes followed by the number of studies in parentheses. Each shadowed circle represents an individual effect size,
scaled according to its precision.

Table 2. Mean estimated effect sizes for both response variables (lnRRa: attack rate and lnRRMCR: maximum consumption rate) and
their corresponding 95% confidence intervals (95%CI), obtained for each group from univariate meta-regression models considering
potential influential moderators.

lnRRa 95% CI lnRRMCR 95% CI

Consumer taxonomic group
Arthropod 0.171 [−1.074 to 1.416] 0.216 [−0.592 to 1.024]
Crustacean 0.105 [−0.143 to 0.354] 0.302 [0.089 to 0.515]
Fish 0.351 [−0.027 to 0.729] 0.194 [−0.097 to 0.485]
Insect 0.452 [−0.250 to 1.154] 0.414 [0.068 to 0.760]
Mollusc 0.587 [−0.735 to 1.909] 1.042 [0.441 to 1.643]

Consumer functional feeding group
Carnivore 0.517 [0.115 to 0.919] 0.177 [−0.238 to 0.591]
Herbivore 0.590 [−0.728 to 1.908] 1.004 [0.328 to 1.680]
Omnivore 0.106 [−0.131 to 0.344] 0.289 [0.099 to 0.479]

Habitat
Freshwater 0.287 [0.032 to 0.541] 0.341 [0.148 to 0.533]
Marine −0.074 [−0.589 to 0.442] −0.120 [−0.657 to 0.417]
Terrestrial −0.116 [−1.147 to 0.915] 0.333 [−0.045 to 0.711]

Latitude of the native assemblage
Temperate 0.176 [−0.081 to 0.433] 0.191 [−0.025 to 0.406]
Tropical 0.299 [−0.235 to 0.832] 0.607 [0.305 to 0.909]
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(Figure 5 legend continues on next page.)
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resources compared to the native snail Bellamya aeruginosa

(Xu et al., 2016). Likewise, non-native omnivores and herbi-
vores exhibited higher MCR compared to their native coun-
terparts. This result, however, should be interpreted in line
with the usual experimental setting applied in FR studies. In
general, experiments are performed by offering the consumer
a single type of prey in the absence of alternative resources,
which may not be realistic for omnivores that feed on a wide
range of items (Maselou et al., 2014; Médoc, Thuillier &
Spataro, 2018). Nevertheless, their capacity for consuming sig-
nificantly more food than native omnivores when resources
are abundant reveals their opportunistic habits, an important
trait in successful invasive species (Vatland & Budy, 2007;
Romanuk et al., 2009). Herbivores, typically represented by
molluscs in our data set, had the highest MCR mean effect
size, contributing to the body of evidence that non-native
snails are highly efficient consumers when resources are abun-
dant (Morrison & Hay, 2011; Liu et al., 2021).

(2) Predictions

We found that, in accordance with our prediction, differ-
ences between non-native and native species in attack rate
and MCR were significantly greater than zero only for fresh-
water taxa and not for marine and terrestrial taxa. This find-
ing should be interpreted with caution, owing to the
relatively small number of terrestrial and marine studies for
comparison. Nevertheless, the pattern is consistent with the
view that a greater degree of insularity in lakes and river
basins creates evolutionary isolation and thus greater poten-
tial naiveté of their populations compared with continental
terrestrial and marine habitats (Cox & Lima, 2006). An inter-
esting subsequent question surrounds whether this effect
lessens with time since invasion as communities adapt and
novelty lessens (see Anton et al., 2020). Our results also align
with the greater proportion of high-impact invasive species
found in freshwater compared to marine habitats
(Ricciardi & Kipp, 2008). Unfortunately, there are no studies

from terrestrial taxa on islands to compare the effect of insu-
larity in this realm.
Regarding the latitude of the native assemblage, our

results were contrary to expectations, with significant differ-
ences in the MCR of non-native species that are introduced
to tropical and sub-tropical latitudes. The stronger predation
pressure in the tropics due to greater diversity does not seem
to provide protection against novel consumers as anticipated
(Freestone et al., 2021). In fact, as there are more specialised
interactions in the tropics (Dobzhansky, 1950), prey might
have evolved specific defences against their native predators,
which are likely not effective against novel predators since
they have a low level of eco-evolutionary experience in inter-
acting with them (Saul & Jeschke, 2015). Nevertheless, the
majority of the observations used in our meta-analysis come
from temperate regions (72%), which creates a bias for this
region, a pattern commonly observed in invasion ecology
studies (Pyšek et al., 2008; Chong et al., 2021), and one that
impedes a balanced interpretation of these results.
We expected that non-natives from a distinct genus would

be more impactful to resources due to the lack of shared evolu-
tionary history that makes prey more vulnerable to them
(Ricciardi & Atkinson, 2004; Anton et al., 2020). However,
we found that MCRs of consumers that share a genus with
the native community were significantly higher compared to
native analogues. This could be explained by the alternative
“pre-adaptation” hypothesis: consumers more closely related
to trophically analogous natives are more likely to performwell
owing to pre-adaptation to available food resources (Ricciardi
&Mottiar, 2006). Indeed, non-native species are more likely to
establish and impact native communities when they are closely
related to natives, consistent with the latter hypothesis
(Ma et al., 2016; Xu et al., 2024). Taxonomic distinctiveness,
driven by prey naiveté and lack of resident enemies, might be
most pronounced when the invasive non-native species is a
top predator (therefore lacking a native trophic analogue) or
some other uncontrolled consumer (e.g. zebra musselsDreissena
polymorpha) (Ricciardi et al., 2013). From a methodological

(Figure legend continued from previous page.)
Fig. 5. Orchard plots showing effect size (lnRR) estimates of maximum consumption rate from univariate meta-regressions with
potentially influential moderators: (A) consumer taxonomic group, (B) consumer functional feeding group, (C) habitat and
(D) latitude of the native assemblage. Positive effect sizes indicate that non-native species have higher functional response
parameters than natives in that group. Mean effects for each group (solid filled circles) are statistically significant when thick
horizontal error bars (95% confidence intervals) do not cross the dashed line at zero. Thin horizontal whiskers indicate prediction
intervals. k is the number of effect sizes followed by the number of studies in parentheses. Each shadowed circle represents an
individual effect size, scaled according to its precision.

Table 3. Mean estimated effect sizes for both response variables (lnRRa: attack rate and lnRRMCR: maximum consumption rate) and
their corresponding 95% confidence intervals (95%CI), considering taxonomic distinctiveness of the non-native species as a potential
influential moderator.

lnRRa 95% CI lnRRMCR 95% CI

Non-native species of a distinct genus 0.278 [−0.143 to 0.698] 0.104 [−0.523 to 0.731]
Non-native species of a shared genus 0.006 [−0.514 to 0.526] 0.951 [0.082 to 1.82]
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stance, the presence of common genera among native assem-
blages could improve native comparator selection and repre-
sentativeness, thus potentially accentuating differences from
analogous non-natives. Given our limited sample size with a
higher proportion of consumers from a distinct genus than
those from the native community (82%), these results are not
a strong refutation of this hypothesis.

(3) Study limitations, future directions and
concluding remarks

The CFR approach was originally designed as a tool to
understand known impacts of non-native species and to pre-
dict the consumptive impact of newly introduced species with

no history of invasion elsewhere (Dick et al., 2014, 2017a).
Here, we used studies that compared non-native versus native
species without explicit consideration of non-native negative
impacts in the field. Therefore, a subset of invasive non-
native species with demonstrable empirical impacts would
likely show stronger effect sizes. We recognise that the selec-
tion of most established non-native species assessed in the
studies was likely motivated by a prior impact, but our results
might still be conservative, particularly because in some study
systems, extreme ecological novelty results in a total paucity
of available wild analogous comparators (e.g. a novel taxo-
nomic order). Additionally, the results of our meta-analysis
are based on the subset of non-native species investigated
by the studies found in the literature search. These are not
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Fig. 6. Orchard plots showing effect size (lnRR) estimates from univariate meta-regression considering taxonomic distinctiveness of
the non-native species as an influential moderator, for both response variables: (A) attack rate and (B) maximum consumption rate.
Positive effect sizes indicate that non-native species have higher functional response parameters than natives in that group. Mean
effects for each group (solid filled circles) are statistically significant when thick horizontal error bars (95% confidence intervals) do
not cross the dashed line of zero. Thin horizontal whiskers indicate prediction intervals. k is the number of effect sizes followed by
the number of studies in parentheses. Each shadowed circle represents an individual effect size, scaled according to its precision.
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necessarily representative of other non-native species, as
not all non-native species have been studied in this perspec-
tive. Despite not finding evidence for publication bias, we
should keep in mind that author or publication biases might
be a concern (Jeschke et al., 2019), since it is likely that impact-
ful non-native species are studied more frequently than non-
native species with low impact.

We also note that impact can change over time (e.g.
because novelty and naivety diminish temporally; Saul &
Jeschke, 2015). However, few studies state the time period
since the non-native study species was introduced, or assess
changes in FR parameters over a long timescale, and
our results might therefore vary according to this aspect
(Strayer et al., 2006; Crystal-Ornelas & Lockwood, 2020).
Indeed, it was observed for invasive plants that their negative
effects on the native community decline over longer time
periods (Iacarella, Mankiewicz & Ricciardi, 2015b). Effects
can also vary along spatial gradients. A study assessing the
per-capita effects of a known invasive predatorHemimysis anomala

(bloody redmysid shrimp) from two distinct sites with different
times since introduction found that feeding rates were higher
at the invasion front (i.e. the recently invaded site) (Iacarella,
Dick & Ricciardi, 2015a). It also highlights more broadly that
ecological impacts can differ among distinct populations of
non-native species due to eco-evolutionary processes and local
contexts (Howard et al., 2018; Haubrock et al., 2024). Thus,
future studies should consider time since introduction and spa-
tial factors, and should clearly state if they are evaluating a
novel or established non-native population.

Our finding that non-native species have a higher consump-
tion rate than native counterparts, particularly when resource
availability is high, has important implications for manage-
ment and conservation. Greater exploitation of resources by
non-natives can lead to an increase in their numerical response
(i.e. abundance) in the long term, increasing the predation
pressure on native biota (Dick et al., 2017b), which may result
in boom–bust dynamics that complicate our ability to control
non-native populations (Strayer et al., 2006; Haubrock
et al., 2022). Still, this increased availability of resources can
be the result of a non-native species itself, as in cases where
an abundant non-native prey sustains a non-native predator
population (Simberloff &Holle, 1999; Pope et al., 2008). What
remains to be tested is if increased resource availability
coupled with multiple non-native species will always result in
more impact, or if other mechanisms, such as indirect effects
or interference competition, can prevent impact (e.g. Bunke
et al., 2019; Faria, Vitule & Olden, 2023b). In other words,
are highly resource-abundant communities more susceptible
to impacts than previously anticipated? Or does higher
resource availability actually negate the impact, because the
species will have enough to consume (even though non-natives
will consume at higher rates)? In this case, we encourage more
research by applying CFR to reveal such feedback processes,
thereby informing best management practices.

Invasion science has relied on invasion history and qualita-
tive or quantitative assessment protocols to identify and
prioritise non-native species that should be managed (Faria

et al., 2023a); nonetheless, as the number of new introduc-
tions worldwide continues to rise, a lack of historical data will
impede applications of these tools to all non-native species
(Seebens et al., 2021). To avoid higher rates of biodiversity
loss that will result in a homogenised world dominated by a
subset of total species diversity (McKinney & Lockwood,
1999), our focus should be on prevention rather than remedi-
ation (Leung et al., 2002). As many invasive non-native spe-
cies have negative impacts that ultimately stem from
resource consumption, quantifying such impacts using rapid
experiments in terms of resource use is a practical way of pre-
dicting and therefore proactively targeting those most likely
to cause harm (Dick et al., 2017a). Our meta-analysis corrob-
orates this, showing that non-native species indeed display
higher consumption rates, and in some cases greater attack
rates. We also highlight high-risk contexts for consumptive
effects, including freshwater environments. Overall, these
results support the use of the CFR approach as a rapid risk
assessment tool for existing and emerging non-native species
to cause negative impacts worldwide.

VI. CONCLUSIONS

(1) Maximum consumption rates of non-native species are
higher than their native counterparts, supporting the
Resource Consumption Hypothesis, which can partly
explain how successful non-native species can reduce native
resource populations and restructure food webs.
(2) Particular taxa and trophic interactions were associated
with the greatest differential functional responses between
non-natives and natives, specifically molluscs, insects and
crustaceans as well as herbivores and omnivores in terms of
maximum consumption rates.
(3) Consumption rate differences between non-native and
native species were greatest for freshwater taxa, which could
indicate greater sensitivity of insular freshwater food webs to
novel consumers, lending weight to inland waters as a priority
for management. These differences need to be further explored
using a larger, more comprehensive data set of terrestrial (main-
land and island) and marine systems as these become available.
(4) There is a current lack of data from CFR studies across
space and time to allow us to investigate if consumptive impact
depends on these factors. Therefore, future studies employing
the CFR approach should consider these context dependen-
cies to consolidate it further as an impact assessment tool
and a guide for invasive non-native species management.
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responses of a cosmopolitan invader demonstrate intraspecific variability in
consumer-resource dynamics. PeerJ 6, e5634.

*Hoxha, T., Crookes, S., MacIsaac, I., Chang, X., Johansson, M.,
Dick, J. T. A., Nicolai, A. & MacIsaac, H. J. (2019). Comparative feeding
behaviour of native and introduced terrestrial snails tracks their ecological impacts.
NeoBiota 47, 81–94.

*Hsiung, A. R., Tan, C. L. Y., Zeng, Y. & Yeo, D. C. J. (2021). Anthropogenic water
conditions amplify predatory impact of the non-native Oriental river prawn
Macrobrachium nipponense. Biological Invasions 23, 1707–1718.

Iacarella, J. C., Dick, J. T. A. & Ricciardi, A. (2015a). A spatio-temporal contrast
of the predatory impact of an invasive freshwater crustacean. Diversity and Distributions
21, 803–812.

Iacarella, J. C.,Mankiewicz, P. S.& Ricciardi, A. (2015b). Negative competitive
effects of invasive plants change with time since invasion. Ecosphere 6, art123.

*Iltis, C., Spataro, T., Wattier, R. & Médoc, V. (2018). Parasitism may alter
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*Kestrup, Å. M., Dick, J. T. A. & Ricciardi, A. (2011). Interactions between
invasive and native crustaceans: differential functional responses of intraguild
predators towards juvenile hetero-specifics. Biological Invasions 13, 731–737.

Knauf, A., Litton, C., Cole, R., Sparks, J., Giardina, C., Gerow, K. &
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(2008). Geographical and taxonomic biases in invasion ecology. Trends in Ecology

and Evolution 23, 237–244.
R Core Team (2023). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna. https://www.r-project.org/.

Biological Reviews 100 (2025) 1163–1180 © 2025 Cambridge Philosophical Society.

Higher consumption rates of non-native species 1179

 1469185x, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13179 by M

cgill U
niversity, W

iley O
nline L

ibrary on [08/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.r-project.org/


†Rauchenberger, M. (1988). Systematics and Biogeography of the Genus Gambusia

(Cyprinodontiformes: Poeciliidae). Dissertation, New York, NY: City University of New
York.

Ricciardi, A. & Atkinson, S. K. (2004). Distinctiveness magnifies the impact of
biological invaders in aquatic ecosystems. Ecology Letters 7, 781–784.

Ricciardi, A., Hoopes, M. F., Marchetti, M. P. & Lockwood, J. L. (2013).
Progress toward understanding the ecological impacts of nonnative species.
Ecological Monographs 83, 263–282.

Ricciardi, A., Iacarella, J. C., Aldridge, D. C., Blackburn, T. M.,
Carlton, J. T., Catford, J. A., Dick, J. T. A., Hulme, P. E., Jeschke, J. M.,
Liebhold, A. M., Lockwood, J. L., MacIsaac, H. J., Meyerson, L. A.,
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